Antreas P. Hatzipolakis
Let ABC be a triangle and A'B'C' the intouch triangle of ABC
(= the pedal triangle of I).
The perp. from C' to BC intersects again the incircle in C'a
The perp. from B' to BC intersects again the incircle in B'a
A
/\
/ \
/ \
/ \
C' B'
/ A0 \
/ C'a B'a \
B------A1------C
A0 := BC'a /\ CB'a. Similarly B0,C0
A1 := Orth. Proj. of A0 on BC. Similarly B1,C1.
The Triangles:
1. ABC, A0B0C0
2. ABC, A1B1C1
are perspective.
Perspectors in Normals:
1. (1-cosA)/cos^2A ::) = (sin^2(A/2)/cos^2A ::)
2. (1-cosA)/(1+cosA)cosA ::) = (tan^2(A/2)/cosA ::)
Antreas
(= the pedal triangle of I).
The perp. from C' to BC intersects again the incircle in C'a
The perp. from B' to BC intersects again the incircle in B'a
A
/\
/ \
/ \
/ \
C' B'
/ A0 \
/ C'a B'a \
B------A1------C
A0 := BC'a /\ CB'a. Similarly B0,C0
A1 := Orth. Proj. of A0 on BC. Similarly B1,C1.
The Triangles:
1. ABC, A0B0C0
2. ABC, A1B1C1
are perspective.
Perspectors in Normals:
1. (1-cosA)/cos^2A ::) = (sin^2(A/2)/cos^2A ::)
2. (1-cosA)/(1+cosA)cosA ::) = (tan^2(A/2)/cosA ::)
Antreas
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου