[Antreas P. Hatzipolakis]:
Let ABC be a triangle, P a point and A'B'C' the pedal triangle of P.
Denote:
Na, Nb, Nc = the NPC centers of PBC, PCA, PAB, resp..
The perpendicular from Na to BC intersects AP at A*
The perpendicular from Nb to CA intersects BP at B*
The perpendicular from Nc to AB intersects CP at C*
For which P's:
1. ABC, A*B*C* are homothetic?
N is such a point. Others?
2. A'B'C', A*B*C* are homothetic?
I is such a point. Others?
[César Lozada]:
1) Locus = {Linf} ∪ {Euler line}
The homothetic center is P
2) Locus={Linf} ∪ {McCay cubic K003}
ETC pairs (P,H2(P) ): (1,1319), (3,3), (4,4)
H(X(1075)) = X(3)X(1075) ∩ X(14249)X(18400)
= (S^4-2*(16*R^4+SB*SC-SW^2)*S^2-(4*R^2-SW)*(16*(36*R^2+8*SA-23*SW)*R^4+4*(2*SA^2-18*SA*SW+19*SW^2)*R^2+(6*SA^2+2*SA*SW-5*SW^2)*SW))*SB*SC : : (barys)
= lies on these lines: {3, 1075}, {14249, 18400}
= [ -1.8268482753765900, -1.2369702975809820, 5.3401892765604080 ]
César Lozada
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου