Let ABC be a triangle, P point in the plane and A'B'C' an inscribed triangle in ABC with centroid P.
Let F be the finite fixed point of the affine transformation that sends A, B, C on A', B', C' respectively.
When A'B'C' moves, the locus of point F is a conic c(P).
c(P) degenerates into two secant lines at Q if and only if P lies on K656. Q lies on K219.
If P lies on K656, then P'=h(G,-1/3)[P] lies on K219, and c(P) is the polar conic of the point P' in the cubic K656.
Pairs {P = X(i), Q = X(j)} (P on K656 and Q on K219) for {i, j}: {2, 2}, {3081, 14401}, {6545, 1647}, {8027, 1646}, {8028, 6544}, {8029, 1648}, {8030, 1649}, {8031, 14434}, {23610, 1645}, {23616, 1650}.
Other pairs {P, Q} (P on K656 and Q on K219 is not in the current edition of ETC)
* If P = X(8023), Q8032 =
= X(2)X(824) ∩ X(4809)X(14402)
= (b^3 - c^3) (-2 a^3 + b^3 + c^3)^2 : :
= lies on the cubic K219 and these lines: {2, 824}, {4809, 14402}
* If P = X(23611), Q23611 =
= X(2)X(647) ∩ X(684)X(2491)
= a^4(b^2-c^2)(b^4+c^4-a^2(b^2+c^2))^2(-a^4+2b^2c^2+a^2(b^2+c^2)) : :
= lies on the cubic K219 and these lines: {2, 647}, {684, 2491}
* If P = X(23612), Q23612 =
= X(2)X(650) ∩ X(647)X(1962)
= a^2 (b - c) (b^2 + c^2 - a (b + c))^2 (-a^2 + 2 b c + a (b + c)) : :
= lies on the cubic K219 and these lines: {2, 650}, {647, 1962}
* If P = X(23613), Q23613
= X(2)X(216) ∩ X(1636)X(2972)
= a^4 (b^2 - c^2)^2 (-a^2 + b^2 + c^2)^4 (-2 b^2 c^2 (b^2 - c^2)^2 + a^6 (b^2 + c^2) + a^2 (b^2 - c^2)^2 (b^2 + c^2) - 2 a^4 (b^4 - b^2 c^2 + c^4)) : :
= lies on the cubic K219 and these lines: {2, 216}, {1636, 2972}
* If P = X(23614), Q23614 =
= X(2)X(92) ∩ X(7004)X(7117)
= a^2 (b - c)^2 (a^3 + b^3 + b^2 c + b c^2 + c^3 - a^2 (b + c) - a (b^2 + c^2))^2 (a^4 (b + c) - a^2 (b - c)^2 (b + c) - 2 b (b - c)^2 c (b + c) + a (b^2 - c^2)^2 - a^3 (b^2 + c^2)) : :
= lies on the cubic K219 and these lines: {2, 92}, {7004, 7117}
* If P = X(23615), Q23615 =
= X(2)X(7) ∩ X(11)X(1146)
= (b - c)^2 (-a + b + c)^2 (2 a^2 - (b - c)^2 - a (b + c)) : :
= lies on the cubic K219 and these lines: {2, 7}, {11, 1146}
= reflection of X(14477) in X(2)
Angel Montesdeoca
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου