Τρίτη 29 Οκτωβρίου 2019

HYACINTHOS 28993

[Kadir Altintas]:, 
 
Let ABC be a triangle with centroid G centroid
Let DEF be the medial triangle of ABC
AD intersects the NPC of ABC at A'. Define B', C' cyclically
The circle with diameter GA' intersects the NPC of ABC again at  A''; define B'',C'' cyclically
The circle with diameter GD intersects the NPC of ABC again at  A'''; define B''',C''' cyclically
 
Prove that lines A''A''', B''B''', C''C''' concur at a point Q on Euler line of ABC.
 
Romantics of Geometry, problem 2972 b
 
--------------------------------------------------------------------------------------------
 
 
[Ercole Suppa]
 
Q = COMPLEMENT OF X(26255)
 
= a^6-4 a^4 b^2-a^2 b^4+4 b^6-4 a^4 c^2+18 a^2 b^2 c^2-4 b^4 c^2-a^2 c^4-4 b^2 c^4+4 c^6 : : (barys)
 
= (36 R^2-5 SW)S^2 -3 SB SC SW : : (barys)

=  As a point on the Euler line, X() has Shinagawa coefficients:  [4 e - 5 f, -3 e -3 f]

= lies on these lines: {2,3}, {6,13857}, {115,21448}, {125,599}, {126,3014}, {524,26869}, {542,6090}, {2393,5650}, {2549,24855}, {2790,23234}, {5024,9745}, {5642,14982}, {6054,9717}, {7998,14984}, {9140,15066}, {9155,9759}, {11064,11179}, {15059,21766}, {15080,20772}, {15131,19153}, {16187,25561}, {19136,22112}
= complement of X(26255)
 
= {X(i),X(j)}-harmonic conjugate of X(k) for these {i,j,k}: {2,376,468}, {2,381,11284}, {2,858,381}, {2,10989,1995}, {2,16063,7426}, {381,3534,18325}, {427,468,6623}, {549,5159,2}, {1368,5159,18531}, {1995,10989,3830}, {7426,16063,3534}, {11284,21312,25}
 
= (6-9-13) search numbers [3.68795996897347955, 2.80871111455792854, -0.00596319846656198185]
 
 
 
Best regards
Ercole Suppa
 
 

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου