[Antreas P. Hatzipolakis]:
Let ABC be a triangle and P a point.
Denote:
Na, Nb, Nc = the NPC centers of PBC, PCA, PAB, resp.
N1, N2, N3 = the NPC centers of PNbNc, PNcNa, PNaNb, resp.
Which is the locus of P such that the reflections of:
1. PNa. PNb, PNc
2. PN1, PN2, PN3
3. NaN1, NbN2, NcN3
in BC, CA, AB, resp. are concurrent?
[César Lozada]:
1) Locus={Linf} ∪ {circumcircle} ∪ { K005 (Napoleon-Feuerbach cubic)}
ETC pairs (P,Q1(P)) for P ∈ K005: (1,36), (3,3), (4,110), (5,6150), (17,30559), (18,30560), (54,30)
Q1( X(61) ) = X(3)X(13) ∩ X(62)X(1337)
= (SB+SC)*((15*R^2-2*SA+3*SW)*S^2+sqrt(3)*(S^2+SA^2+4*SB*SC-(21*SA-3*SW)*R^2)*S-3*(R^2-SA+2*SW)*SA*SW) : : (barys
= lies on these lines: {3, 13}, {62, 1337}
= midpoint of X(8172) and X(16965)
= [ -4.4928056704912800, -3.8879342511705630, 8.4059138883292070 ]
Q1( X(62) ) = X(3)X(14) ∩ X(61)X(1338)
= (SB+SC)*((15*R^2-2*SA+3*SW)*S^2-sqrt(3)*(S^2+SA^2+4*SB*SC-(21*SA-3*SW)*R^2)*S-3*(R^2-SA+2*SW)*SA*SW) : : (barys)
= lies on these lines: {3, 14}, {61, 1338}
= midpoint of X(8173) and X(16964)
= [ 6.1080011092578240, 6.1201598565486650, -3.4154466999760020 ]
2) Locus = {Linf} ∪ {nasty degree 22 through ETC’s 5, 13, 14, 110}
ETC pairs (P,Q2(P)): (5, 6150), (13,15), (14,16)
Q2( X(110) ) = X(110)X(924) ∩ X(476)X(12092)
= (SB+SC)*(SA-SB)*(SA-SC)*(S^2-27*R^4-2*R^2*(3*SA-8*SW)+SA^2-2*SB*SC-2*SW^2) : : (barys)
= lies on these lines: {110, 924}, {476, 12092}, {933, 1291}, {2071, 10628}
= [ -17.4302611072831800, 6.3402837081745140, 7.2959731949942600 ]
3) Locus = {Linf} ∪ {horrendous degree 25 through ETC’s X(5) }
Q3(X(5)) = X(6150)
César Lozada
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου