Δευτέρα 28 Οκτωβρίου 2019

HYACINTHOS 28728

[César Lozada - Dao Thanh Oai]:

 

Theorem 17. Let ABC be a triangle be a point in the plane and its circumcenter. Denote Oa, Ob, O the centers of the circles (BCP)(CAP)(ABP)ObOmeets OA at A0 and define B0Ccyclically. Then A0Oa, B0Ob,C0Oare concurrent. (Dao Thanh Oai)

For P=u:v:w (trilinears), the point of concurrence is:

 

Q(P) = a*((b*c*v*w+(u^2+v^2+w^2)*SA)*a*b*c+(S^2+SA*SB)*b*u*w+(S^2+SA*SC)*c*u*v) : :

 

Q(P) lies on the Brocard axis X(3)X(6)

 

If P lies on the Lemoine axis X(187)X(237) or in the line at infinity then Q(P)=X(511).

 

Let Q(P)=Q(t) be a point on the Brocard axis (not in the infinity) such that X(3)Q(t)=t*X(3)X(6). The locus of P such that Q(P)=Q(t) is a circle Γ{O*, ρ } with trilinear equation:

∑ [2*a*b*c*t*u^2+(2*t*(b^2+c^2)-a^2-b^2-c^2)*a*v*w] = 0

having center O*= Q(t) and squared-radius: ρ(t)2 = ((-3*tan(ω)^2+1)*t^2-2*t+1)*R^2

 

Therefore:

·         Q(P) = Q(t=0)=X(3) for all the points P on the circle (X(3), ρ(t=0)=R), i.e, for P on the circumcircle of ABC.

·         Q(P) = Q(t=1/2)=X(182) for all the points P on the circle (X(182), ρ(t=1/2)), i.e, for P on the Brocard circle of ABC, through ETC’s {3, 6, 1083, 1316, 5091, 5108, 6141, 6142, 6232, 6322, 6795, 8429, 9129, 11650, 13414, 13415, 13511, 13515, 13516, 14685, 18332, 18338, 22740, 22742, 24279}

·         Q(P) = X(2080) ) for P on the circle centered at X(2080) through ETC’s { 23, 352, 385, 11676}

·         Q(P) = X(9821) for P on the circle centered at X(11171) through ETC’s { 8782, 9862, 9984, 9998, 9999, 12499, 12503, 13210, 13235, 13236, 14691} (circumcircle of 5th Brocard triangle)

·         Q(P)  = X(11171) for P on the circle centered at X(11171) through ETC’s { 2, 353, 1340, 1341, 7709, 15920, 15921}

·         Q(P)  = X(13329) for P on the circle centered at X(13329) through ETC’s { 36, 238, 5526, 9441}

 

Others pairs (P,Q(P)):

(1, 991), (15, 15), (16, 16), (1742, 991), (2459, 6566), (2460, 6567), (7598, 1151), (7599, 1152), (7601, 6407), (7602, 6408), (7711, 12054), (8290, 12054), (10817, 6407), (10818, 6408), (10819, 1151), (11833, 6407), (11834, 6408), (11835, 1151), (11836, 1152), (14660, 12054), (14704, 5238), (14705, 5237)

 

Some others:

 

Q( X(4) ) = X(3)X(6) ∩ X(5)X(264)

= a^2*((b^4+b^2*c^2+c^4)*a^4-2*(b^4-c^4)*(b^2-c^2)*a^2+(b^4-b^2*c^2+c^4)*(b^2-c^2)^2)*(-a^2+b^2+c^2) : : (barys)

= (S^2-SB*SC)*(S^2+4*R^2*SW+2*SB*SC-SW^2) : : (barys)

= 3*X(2)-4*X(10003), 5*X(1656)-4*X(14767)

= on lines: {2, 1972}, {3, 6}, {4, 3164}, {5, 264}, {51, 6638}, {184, 13558}, {237, 6403}, {339, 7697}, {417, 15043}, {418, 3060}, {426, 5422}, {441, 18583}, {852, 5640}, {1073, 14489}, {1656, 14059}, {1942, 4846}, {1993, 6641}, {1994, 23606}, {5562, 17039}, {5889, 26897}, {5943, 6509}, {6375, 9243}, {6389, 14561}, {6776, 20975}, {10519, 20819}, {10796, 15013}, {11272, 28407}, {12161, 14152}, {15073, 20775}, {15526, 24206}, {20576, 28697}, {21969, 26907}

= midpoint of X(4) and X(3164)

= reflection of X(i) in X(j) for these (i,j): (3, 216), (264, 5)

= anticomplement of the anticomplement of X(10003)

= X(216)-of-X3-ABC reflections triangle

= X(264)-of-Johnson triangle

= X(3164)-of-Euler triangle

= {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3, 5093, 15905), (3, 15851, 5050), (371, 372, 1970)

= [ -7.7535634177534960, -5.1664204548220370, 10.7959848357474100 ]

 

Q( X(5) ) = X(3)X(6) ∩ X(5012)X(14652)

= (SB+SC)*((5*R^2-2*SA-2*SW)*S^2-R^2*SA*SW) : : (barys)

= on lines: {3, 6}, {5012, 14652}

= [ 6.1281646724077430, 5.3971271669613320, -2.9241918671001170 ]

 

Q( X(13) ) = X(3)X(6) ∩ X(13)X(9159)

= (SB+SC)*(S^2+sqrt(3)*(SA-3*R^2+SW)*S+(9*R^2-SW)*SA) : : (barys)

= on lines: {3, 6}, {13, 9159}, {17, 10217}, {11658, 16241}

= [ 6.4331061155840160, 5.6291777759291700, -3.2255844932361300 ]

 

Q( X(14) ) = X(3)X(6) ∩ X(14)X(9159)

= (SB+SC)*(S^2-sqrt(3)*(SA-3*R^2+SW)*S+(9*R^2-SW)*SA) : : (barys)

= on lines: {3, 6}, {14, 9159}, {18, 10218}, {11659, 16242}

= [ 3.9527990040433850, 3.7417440126949400, -0.7741424518244484 ]

 

Q( X(20) ) = X(3)X(6) ∩ X(20)X(3186)

= (-a^2+b^2+c^2)*(2*(b^2+c^2)*a^6-(3*b^4-b^2*c^2+3*c^4)*a^4+2*(b^2+c^2)*b^2*c^2*a^2+(b^6-c^6)*(b^2-c^2))*a : : (barys)

= (S^2-SB*SC)*(S^2-16*R^2*SW-2*SB*SC+3*SW^2) : : (barys)

= on lines: {3, 6}, {20, 3186}, {185, 20794}, {2790, 23240}, {7750, 14615}, {9306, 14673}, {11328, 12294}

= midpoint of X(20) and X(3186)

= [ 9.9514788252431700, 8.3065459989827130, -6.7030114367312700 ]

 

César Lozada

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου