Antreas P. Hatzipolakis
[APH]:
Let ABC be a triangle, P a point and A'B'C' the pedal triangle of P.
Let La be the Euler line of AAbAc. Simillarly Lb, Lc.
(La, Lb, Lc concur at Feuerbach point)
Let L1, L2, L3 be the reflections of La, Lb, Lc, resp. in PA', PB', PC', resp.
For P = I:
1. L1, L2, L3 are concurrent (on the OI line),
2. the parallels to L1, L2, L3 through A', B', C', resp. are concurrent (on the OI line)
3. the parallels to L1, L2, L3 through Ia, Ib, Ic (IaIbIc = excentral triangle), resp. are concurrent (on the OI line)
4. Locus of P such that L1, L2, L3 are concurrent?
[Peter Moses]:
Hi Antreas,
1). X(5048).
2). X(1319).
3). X(484).
4) IN line.
Best regards,
Peter Moses
4. Locus of P such that L1, L2, L3 are concurrent?
[Peter Moses]:
Hi Antreas,
1). X(5048).
2). X(1319).
3). X(484).
4) IN line.
Best regards,
Peter Moses
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου