Παρασκευή 25 Οκτωβρίου 2019

HYACINTHOS 27049

[Antreas P. Hatzipolakis]:

Let ABC be a triangle, P a point and MaMbMc, PaPbPc the pedal triangles of O, P, resp.

Deonte:

M1, M2, M3 = the midpoints of AP, BP, CP, resp.

The triangles:
1. M1M2M3, MaMbMc are cyclologic.
The cyclologic center (MaMbMc, M1M2M3) is the Poncelet point of (ABCP)
[circumcircles of MaM2M3, MbM3M1, McM1M2 = NPCs of PBC, PCA, PAB, resp.]

Let U be the cyclologic center (M1M2M3, MaMbMc)
ie  the point of concurrence of the circumcircles of M1MbMc, M2McMa, M3MaMb

2. M1M2M3, PaPbPc are cyclologic.
The cyclologic center (PaPbPc, M1M2M3) is the Poncelet point of (ABCP)
[circumcircles of PaM2M3, PbM3M1, PcM1M2 = NPCs of PBC, PCA, PAB, resp.]
 
Let W be the cyclologic center (M1M2M3, PaPbPc)
ie  the point of concurrence of the circumcircles of M1PbPc, M2PcPa, M3PaPb

Which is the line UW ?

**************
Denote:
 
Oa, Ob, Oc =  the circumcenters of M1PbPc, M2PcPa, M3PaPb, resp.  
 
O1, O2, O3  = the circumcenters of M1MbMc, M2McMa, M3MaMb, resp.


Which is the locus of P such that OaObOc, O1O2O3 are perspective ?
The entire plane?  (Perspector in terms of P?)


[César Lozada]:

 

> Which is the line UW ?

 

For P not in the infinity and not on the circumcircle, the line UV is the isogonal conjugate of the circumconic centered at Q, where:

Q = Complement(AntigonalConjugate( Complement( AnticomplementaryConjugate( AntigonalConjugate(P)))))

 

ETC pairs (P,Q(P)): (3,14993), (23,2), (69,15477), (76,9467), (265,11597), (316,206), (671,6593), (858,3162), (895,2482), (1320,214), (1325,10), (1916,8290), (2071,6523), (3484,14363), (5011,9), (5179,478), (5523,6), (10152,1511), (11607,513), (11610,5976), (13509,1249), (14366,523), (14887,514), (15342,1084), (15343,8054)

 

Some others:

Q( X(1) ) = midpoint of X(1168) and X(2222)

= a*(a^5-(b^2-b*c+c^2)*a^3+(b+c) *(b^2-3*b*c+c^2)*a^2-(b^2-4*b* c+c^2)*b*c*a-(b^3+c^3)*(b-c)^ 2)*(a^2-c*a-b^2+c^2)*(a^2-b*a+ b^2-c^2) : : (barys)

= on lines: {80, 3465}, {106, 1168}, {519, 1807}, {1324, 6187}

= midpoint of X(1168) and X(2222)

= [ -0.0566339426909219, 2.7453881035796360, 1.7661499222096710 ]

 

Q(X(2)) = complement of X(13574)

= (-SA*SW*(3*SA-2*SW)+(9*R^2-3* SW)*S^2)*(SB+SC)*(3*SB-SW)*(3* SC-SW) : : (barys)

= X(23)-3*X(11580)

= on the cubic K043 and lines: {2, 8877}, {23, 111}, {67, 524}, {468, 8753}, {575, 10558}, {671, 5189}, {892, 3266}, {897, 7292}, {1551, 14094}, {10559, 11422}

= midpoint of X(691) and X(10630)

= complement of X(13574)

= {X(i),X(j)}-Harmonic conjugate of X(k) for these (i,j,k): (23, 15398, 111), (10630, 11580, 111)

= [ -0.2215188146043134, 3.6701379669870000, 1.2020391884261390 ]

 

Q(X(6)) ) = complement of X(14364)

= (3*a^8-2*(b^2+c^2)*a^6-(2*b^4- 3*b^2*c^2+2*c^4)*a^4+(b^2+c^2) *(2*b^4-3*b^2*c^2+2*c^4)*a^2-( b^4-c^4)^2)*(a^4-c^2*a^2+c^4- b^4)*(a^4-b^2*a^2+b^4-c^4) : : (barys)

= on the cubic K043 and lines: {2, 14364}, {6, 14357}, {67, 187}, {111, 468}, {524, 10317}, {3455, 5938}

= midpoint of X(935) and X(10415)

= complement of X(14364)

= [ 1.2084557160378820, 1.4118577966469470, 2.1054756768267010 ]

 

 

 

> Which is the locus of P such that OaObOc,

O1O2O3 are perspective ?
> The entire plane?  (Perspector in terms of P?)

Yes. The locus is the entire plane.

 

For P = u : v : w (trilinears), the perspector Z(P) is:

 

Z(P) = b*c*(-a^2+b^2+c^2)*(a^6-b^2*a^ 4+(b^2-c^2)*(b^2+2*c^2)*a^2-( b^2-c^2)^3)*u^2*v^2-b*c*(-a^2+ b^2+c^2)*(a^6-c^2*a^4-(b^2-c^ 2)*(2*b^2+c^2)*a^2+(b^2-c^2)^ 3)*u^2*w^2+(b^2-c^2)*b*c*a^2* v^2*w^2*(-a^2+b^2+c^2)^2-a*b* c^2*(-a^2+b^2+c^2)*((b^2+c^2)* a^2-(b^2-c^2)^2)*u*w^3+a*b^2* c*(-a^2+b^2+c^2)*((b^2+c^2)*a^ 2-(b^2-c^2)^2)*v^3*u-c^2*a^2*( -a^2+b^2+c^2)*(a^4-(b^2+2*c^2) *a^2-(b^2-c^2)*c^2)*v*w^3-c*a* ((b^2-c^2)*a^6-(2*b^2-3*c^2)*( b^2+c^2)*a^4+(b^2-c^2)*(b^4+2* b^2*c^2+3*c^4)*a^2-(b^2-c^2)^ 3*c^2)*u^3*v-a*b*((b^2-c^2)*a^ 6-(3*b^2-2*c^2)*(b^2+c^2)*a^4+ (b^2-c^2)*(3*b^4+2*b^2*c^2+c^ 4)*a^2-(b^2-c^2)^3*b^2)*u^3*w+ b^2*a^2*(-a^2+b^2+c^2)*(a^4-( 2*b^2+c^2)*a^2+(b^2-c^2)*b^2)* w*v^3+c*a*(2*a^8-5*(b^2+c^2)* a^6+(5*b^4+4*b^2*c^2+3*c^4)*a^ 4-(3*b^2-c^2)*(b^4+c^4)*a^2+( b^4+2*b^2*c^2-c^4)*(b^2-c^2)^ 2)*u*v*w^2-a*b*(2*a^8-5*(b^2+ c^2)*a^6+(3*b^4+4*b^2*c^2+5*c^ 4)*a^4+(b^2-3*c^2)*(b^4+c^4)* a^2-(b^4-2*b^2*c^2-c^4)*(b^2- c^2)^2)*u*v^2*w-(b^2-c^2)*v*w* u^2*(3*a^8-9*(b^2+c^2)*a^6+(9* b^4+8*b^2*c^2+9*c^4)*a^4-3*(b^ 2+c^2)*(b^4+c^4)*a^2+4*(b^2-c^ 2)^2*b^2*c^2) : : (trilinears)

 

Z(P) lies on the line {X(3), P}

 

·         If P lies on the Euler line and not P in {O,H} then Z(P) = X(5) = N

·         If P lies on the Feuerbach-Napoleon cubic K005 and not P in {O,H} then Z(P)=P (ETC centers on K005: 1, 3, 4, 5, 17, 18, 54, 61, 62, 195, 627, 628, 2120, 2121, 3336, 3459, 3460, 3461, 3462, 3463, 3467, 3468, 3469, 3470, 3471, 3489, 3490, 6191, 6192, 7344, 7345, 8837, 8839, 8918, 8919, 8929, 8930)

·         If P lies on the Lemoine cubic (K009) and not P in {O,H} then Z(P) is the point at infinity of line {X(3), P}. (ETC centers on K009: 3, 4, 32, 56, 1147, 6177, 6178, 6337, 7367, 10570, 11517, 13608, 14357, 14376, 14377, 14378, 14379, 14381, 14382, 14383, 14384, 14385, 14386, 15261, 15454)

 

ETC pairs (P, Z(P)) for other cases:

(6,575), (8,5690), (13,17), (14,18), (15,61), (16,62), (36,65), (65,5885), (265,5449), (399,3470), (484,3336), (895,8548), (1138,3471), (1157,195), (1173,15047), (1263,3459), (3065,3467), (3465,3469), (3466,3468), (3483,3461), (3484,3463), (5903,65), (6145,14076), (7165,3460), (14483,5643)

 

Example:

Z(X(7))  {3, 7}/\{5, 8255}

= 16*q*p^5 - 4*(6*q^2-5)*p^4 - 52*q*p^3 + (4*q^2-5)*(2*q^2+7)*p^2 + (14*q^2+31)*q*p + 14 +8*q^2 : : (trilinears), where p=sin(A/2), q=cos((B-C)/2)

= 2*(b+c)*a^8-5*(b^2+c^2)*a^7-

(b+c)*(b^2+14*b*c+c^2)*a^6 + (11*b^4+11*c^4+3*(3*b^2+2*b*c+ 3*c^2)*b*c)*a^5 –

(b+c)*(5*b^4+5*c^4-2*(13*b^2+ b*c+13*c^2)*b*c)*a^4-(7*b^4+7* c^4+2*(13*b^2+18*b*c+13*c^2)* b*c)*(b-c)^2*a^3 +

(b^2-c^2)*(b-c)*(5*b^4+5*c^4- 2*(3*b^2+7*b*c+3*c^2)*b*c)*a^2 +

(b^2-c^2)^2*(b-c)^2*(b^2+5*b* c+c^2)*a-(b^2-c^2)^3*(b-c)^3 : : (barys)

= r*(7*R+2*r)*X(3)+(8*R^2+7*R*r+ 2*r^2)*X(7)

= on lines: {3, 7}, {5, 8255}, {7701, 11374}

= [ 1.6443480812816350, 1.5542656130896950, 1.8057045584076810 ]

 

César Lozada

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου