Παρασκευή 25 Οκτωβρίου 2019

HYACINTHOS 27034

[Kadir Altintas] (*)
 
Let ABC be a triangle and A'B'C' the cevian triangle of G

Denote:

A circle (A', x) intersects BC at Bc, Cb near to B, C, resp.
A circle (B', y) intersects CA at Ca, Ac near to C, A, resp.
A circle (C', z) intersects AB at Ab, Ba near to A, B, resp.
 
M1, M2, M3 = the midpoints of AbAc, BcBa, CaCb, resp.

1. ABC, M1M2M3 are perspective.
2. ABC, M1M2M3 share the same centroid
3. Ab, Ac, Bc, Ba, Ca, Cb lie on a conic.

(*) Romantics of Geometry 1520
 
 
****************************** ************************

If x, y, z (or a/2 -x =: X, b/2 -y =: Y, c/2 -z =: Z) are symmetric functions of a,b,c ie f(a,b,c), f(b,c,a), f(c,a,b) then the point of concurrence is a triangle center.

Which is it if x, y, z = exradii r_a, r_b, r_c, resp. or altitudes h_a, h_b, h_c, resp. ?

αph
 

[Angel Montesdeoca]:
 
 
Let ABC be a triangle.

1.     r_a, r_b, r_c the exradii.

The circle B(r_a) of center B and radius r_a, cut BC into Ab and A'b.
The circle C(r_a) of center C and radius r_a, cut BC into Ac and A'c.

The points Bc, B'c, Ca, C'a, Ba, B'a, Cb, C'b are defined cyclically.

 *** M1, M2, M3 = the midpoints of BcCb, CaAc y AbBa, resp.
 
  The triangles ABC, M1M2M3 are perspective, with perspector
  
   U = ( a(b+c-a)/(a(b+c-a) - S) : ... : ...), 
   
     lies on lines X(i)X(j) for these {i, j}:  {1, 8958}, {9, 13388}, {165, 6213}, {223, 1212}, {281, 1659};
 and (6 - 9 - 13) - search numbers (5.43524811180364, 3.87468486200098, -1.55038570492567).
 
  *** M'1, M'2, M'3 = the midpoints of B'cC'b, C'aA'c y A'bB'a, resp.
 
  The triangles ABC, M'1M'2M'3 are perspective, with perspector
  
   V = ( a(b+c-a)/(a(b+c-a)+ S) : ... : ...), 
   
     lies on lines X(i)X(j) for these {i, j}:  {9, 13389}, {165, 6212}, {223, 1212}, {281, 3536}, {558, 5451};
 and (6 - 9 - 13) - search numbers (3.14538773488534, 2.05175767847960, 0.768499442243731).
 
  *** N1, N2, N3 = the midpoints of BaCa, CbAb y AcBc, resp.
 
  The triangles ABC, N1N2N3 are perspective, with perspector X(9).
  
    *** N'1, N'2, N'3 = the midpoints of B'aC'a, C'bA'b y A'cB'c, resp.
 
  The triangles ABC, N'1N'2N'3 are perspective, with perspector X(9).
  
  ***   The triangles M1M2M3, N1N2N3 are perspective, with perspector 
  
  Z = ((r+4R)^2-s(2r+12R-s)) X(6666) + (R s) X(13359) =
( 2a^6-3a^5(b+c)-3a^4(b+c)^2 +2a^3(3b^3+5b^2c+5b c^2+3c^3) +8a^2b c(b-c)^2 -a(b-c)^2(3b^3+13b^2c+13b c^2+3c^3) +(b-c)^4(b+c)^2
+ 2S(3a^3(b+c)-2a^2(3b^2+b c+3c^2) + 3a(b-c)^2(b+c)+2b c(b-c)^2 ) : ... : ...), 
 
      lies on lines X(i)X(j) for these {i, j}: {2, 13436}, {6666, 13359};
 and (6 - 9 - 13) - search numbers (4.69425637776697, 0.824161421230953, 0.903511323624350).
 
   ***   The triangles M'1M'2M'3, N'1N'2N'3 are perspective, with perspector 
  
  W =  ((r+4R)^2+s(2r+12R+s)) X6666 - (R s) X13359 =
( 2a^6-3a^5(b+c)-3a^4(b+c)^2 +2a^3(3b^3+5b^2c+5b c^2+3c^3) +8a^2b c(b-c)^2 -a(b-c)^2(3b^3+13b^2c+13b c^2+3c^3) +(b-c)^4(b+c)^2
- 2S(3a^3(b+c)-2a^2(3b^2+b c+3c^2) + 3a(b-c)^2(b+c)+2b c(b-c)^2 ) : ... : ...), 
 
      lies on lines X(i)X(j) for these {i, j}: {2, 13453}, {6666, 13360};
 and (6 - 9 - 13) - search numbers (2.79510334680824, 1.84582232018845, 1.07273979248088).
 
 
 2.  h_a, h_b, h_c are the  altitudes.
  
The circle B(h_a) of center B and radius h_a, cut BC into Ab and A'b.
The circle C(h_a) of center C and radius h_a, cut BC into Ac and A'c.

The points Bc, B'c, Ca, C'a, Ba, B'a, Cb, C'b are defined cyclically.

 *** M1, M2, M3 = the midpoints of BcCb, CaAc y AbBa, resp.
 
  The triangles ABC, M1M2M3 are perspective, with perspector  X(494).
  
   *** M'1, M'2, M'3 = the midpoints of B'cC'b, C'aA'c y A'bB'a, resp.
 
  The triangles ABC, M'1M'2M'3 are perspective, with perspector X(493).
  
    *** N1, N2, N3 = the midpoints of BaCa, CbAb y AcBc, resp.
 
  The triangles ABC, N1N2N3 are perspective, with perspector X(6).
  
    *** N'1, N'2, N'3 = the midpoints of B'aC'a, C'bA'b y A'cB'c, resp.
 
  The triangles ABC, N'1N'2N'3 are perspective, with perspector X(6).
  
   ***   The triangles M1M2M3, N1N2N3 are perspective, with perspector 
  
  U1 = ( 2a^6 -3a^4(b^2+c^2) -12a^2b^2c^2 +(b^2-c^2)^2(b^2+c^2)
+ 2S(3a^2(b^2+c^2)+2b^2c^2) : ... : ...), 
 
      lies on line  X(2)X(589);
 and (6 - 9 - 13) - search numbers  (2.25537763508478, 3.14015087717229, 0.425770350749050).
 
   ***   The triangles M'1M'2M'3, N'1N'2N'3 are perspective, with perspector 
  
  U2 = ( 2a^6 -3a^4(b^2+c^2) -12a^2b^2c^2 +(b^2-c^2)^2(b^2+c^2)
- 2S(3a^2(b^2+c^2)+2b^2c^2) : ... : ...), 
 
      lies on line  X(2)X(588);
 and (6 - 9 - 13) - search numbers (2.36643510911517, 1.75473740795483, 1.33364545680865).
 
 More details in: http://amontes.webs.ull.es/otrashtm/HGT2018.htm#HG110118
 
 Angel Montesdeoca
 

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου