Denote:
A1B1C1 = the midheight triangle
(ie A1, B1, C1 = the midpoints of AA', BB', CC', resp.)
A2, B2, C2 = the reflections of A1, B1, C1 in H, resp.
A3, B3, C3 = the reflections of A2, B2, C2 in BC, CA, AB, resp.
[César Lozada]:
Hi Antreas,
1) Q1 = X(6409)X(10962) ∩ X(6410)X(10960)
= (SB+SC)*(S^2-4*SB*SC)*(4*SA^2- S^2) : : (barys)
= on lines: {6, 8912}, {110, 3532}, {113, 1657}, {141, 3523}, {376, 2883}, {960, 7987}, {1147, 1192}, {1209, 5054}, {1498, 11598}, {1620, 12164}, {5023, 11672}, {6409, 10962}, {6410, 10960}, {8542, 10541}
= [ 4.1423623039329250, 2.8833749115280530, -0.2673776740425469 ]
2) Q2 = X(54)X(3545) ∩ X(64)X(3543)
= SA*(4*SB^2-S^2)*(4*SC^2-S^2) : : (barys)
= on Jerabek hyperbola and these lines: {6, 1131}, {54, 3545}, {64, 3543}, {3426, 3853}, {3431, 5067}, {3527, 3845}, {3532, 5059}, {5056, 14528}, {11001, 11270}, {11744, 12324}, {13851, 15077}
= [ -0.3966182303996964, -0.5080122380786714, 4.1754198299925500 ]
Q2 is a point on the Jerabek hyperbola. Its isogonal conjugate Q2-1 lies on the Euler line:
Q2-1 = circumcircle-inverse-of X(13473)
= SB*SC*(4*SA^2-S^2) :: (barys)
= 5*(4*R^2-SW)*X(3)+2*R^2*X(4), X(4)-5*X(3147)
= As a point on the Euler line, this center has Shinagawa coefficients (-5*F, E+5*F)
= on lines: {2, 3}, {64, 1495}, {74, 12315}, {154, 1204}, {165, 11363}, {184, 1192}, {187, 3172}, {232, 5023}, {1112, 15051}, {1151, 5411}, {1152, 5410}, {1181, 11202}, {1350, 11470}, {1398, 5204}, {1829, 7987}, {1968, 5210}, {1986, 15040}, {2207, 5206}, {2931, 12301}, {3167, 11449}, {3199, 8588}, {3576, 11396}, {5010, 11399}, {5024, 10312}, {5050, 8537}, {5085, 12167}, {5090, 10164}, {5217, 7071}, {5412, 6410}, {5413, 6409}, {5894, 15448}, {6221, 10881}, {6241, 14530}, {6398, 10880}, {6403, 12017}, {6411, 11473}, {6412, 11474}, {6459, 13937}, {6460, 13884}, {6746, 15045}, {7280, 11398}, {8273, 11383}, {8541, 10541}, {8567, 11381}, {8722, 11380}, {8780, 12111}, {9777, 11425}, {9786, 11402}, {10282, 10605}, {10902, 11401}, {11270, 12112}, {11408, 11481}, {11409, 11480}, {13093, 14157}, {13148, 15034}, {13366, 14528}, {15105, 15152}
= circumcircle-inverse-of X(13473)
= {X(i),X(j)}-Harmonic conjugate of X(k) for these (i,j,k): (3, 4, 11410), (3, 25, 3516), (3, 1598, 3520), (3, 2070, 12085), (3, 3517, 378), (3, 9714, 12084), (3, 9909, 11413), (24, 1593, 25), (25, 3516, 11403), (26, 15646, 3), (1113, 1114, 13473), (1593, 3515, 24), (1598, 3520, 1593), (3517, 5198, 25), (3522, 6353, 1885), (7488, 15078, 3)
= [ 4.0137326199531500, 3.1336243690586640, -0.3812597520346106 ]
3) Q3 = X(2)X(5893) ∩ X(4)X(8780)
= (S^2-4*SB*SC)*(2*SA-16*R^2+3* SW) : : (barys)
= on lines: {2, 5893}, {4, 8780}, {6, 1131}, {20, 5972}, {52, 6623}, {185, 3091}, {11439, 15431}, {12111, 15010}
= [ -2.8050269610881190, -3.9699790025613410, 7.6837393118752090 ]
4) Q4 = X(6)X(1131) ∩ X(381)X(12242)
= (32*R^2-3*SA-5*SW)*S^2+32*(4* R^2-SW)*SB*SC : : (barys)
= on lines: {6, 1131}, {381, 12242}, {382, 7687}, {389, 3843}, {974, 12290}
= [ -1.6008225957439080, -2.2389956203200050, 5.9295795709338790 ]
5) Z5 = (3*SA-80*R^2+17*SW)*(S^2-4*SB* SC) : : (barys)
= on lines {}
= [ -9.7524162261091670, -10.8233329166507300, 15.6348562977929600 ]
I wish you a happy new year and plenty of health and prosperity.
Best regards,
César Lozada
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου