Denote:
A"B"C" = the midheight triangle
(ie A", B", C" = the midpoints of AA', BB', CC', resp.)
A*, B*, C* = the reflections of A", B", C" in H, resp.
Ab, Ac = the orthogonal projections of A* on AB, AC, resp.
Bc, Ba = the orthogonal projections of B* on BC, BA, resp.
1. La, Lb, Lc are concurrent at
W1 = a^2 (-a^12 (b^2+c^2)
+4 a^10 (b^4+c^4)
-5 a^8 (b^6+c^6)
+4 a^6 (2 b^6 c^2-3 b^4 c^4+2 b^2 c^6)
+a^4 (b^2-c^2)^2 (5 b^6+b^4 c^2+b^2 c^4+5 c^6)
+(b^2-c^2)^4 (b^6+6 b^4 c^2+6 b^2 c^4+c^6)
-4 a^2 (b^12-4 b^8 c^4+6 b^6 c^6-4 b^4 c^8+c^12)) : .... : ....
W1 is the midpoint of X(i) and X(j), for these {i, j}: {74,12292}, {265,7723}, {1539,15101}, {1986,12281}, {3448,12825}, {10990,11381}.
W1 is the reflection of X(i) in X(j), for these {i, j}: {974,125}, {1112,7687}, {1986,11746}, {11561,15088}, {11562,9826}, {12236,11801}, {13148,389}.
W1 lies on lines X(i)X(j) for these {i, j}: {4, 67}, {5, 113}, {24, 64}, {51, 14448}, {68, 265}, {110, 7503}, {146, 7544}, {184, 5609}, {186, 15138}, {389, 12099}, {399, 13198}, {468, 6000}, {542, 5907}, {973, 1112}, {1154, 13851}, {1181, 5622}, {1204, 12106}, {1216, 12358}, {1498, 5621}, {1539, 15101}, {1593, 15106}, {1658, 12041}, {1986, 3567}, {1995, 10605}, {2493, 3269}, {2777, 3575}, {2854, 11459}, {3060, 15044}, {3091, 12824}, {3331, 11062}, {3448, 12825}, {3541, 15131}, {5504, 12301}, {5562, 14984}, {5655, 14787}, {5656, 7505}, {6334, 9517}, {6639, 15061}, {6699, 7542}, {7506, 10620}, {7526, 15132}, {7569, 15102}, {7722, 15081}, {9140, 12111}, {9934, 13171}, {10113, 10263}, {10297, 13754}, {10990, 11381}, {11064, 15115}, {11801, 12236}, {12270, 15059}, {12279, 15021}, {13367, 14128}, {15025, 15043}, {15057, 15072}.
(6 - 9 - 13) - search numbers of W1: (-0.622150232464433, -1.67731640187864, 5.08902979049933)
2. The parallels to La, Lb, Lc through A, B, C, resp. concur at X(74)
3. The parallels to La, Lb, Lc through A', B', C', resp. are concurrent at X(1986).
4. The parallels to La, Lb, Lc through A*, B*, C*, resp. are concurrent at X(12292).
5. L1, L2, L3 are concurrent at the midpoint of X(54) and X(12300):
W5 = a^2 (-a^12 (b^2+c^2)
+4 a^10 (b^4+b^2 c^2+c^4)
-5 a^8 (b^6+2 b^4 c^2+2 b^2 c^4+c^6)
+4 a^6 (4 b^6 c^2+b^4 c^4+4 b^2 c^6)
+a^4 (b^2-c^2)^2 (5 b^6-3 b^4 c^2-3 b^2 c^4+5 c^6)
-4 a^2 (b^12-b^10 c^2-b^2 c^10+c^12)
+(b^2-c^2)^4 (b^6+4 b^4 c^2+4 b^2 c^4+c^6)) : ... : ...
W5 is the reflection of X(i) in X(j), for these {i, j}: {973,3574}, {6152,11743}.
W5 lies on lines X(i)X(j) for these {i, j}: {4, 9973}, {5, 51}, {54, 64}, {195, 12164}, {974, 10628}, {1199, 15140}, {1885, 11577}, {5102, 10982}, {5462, 12358}, {5876, 11424}, {5907, 5965}, {6152, 11743}, {6689, 10257}, {7691, 7998}, {10019, 11808}, {10151, 11576}, {10610, 10984}, {15058, 15069}
(6 - 9 - 13) - search numbers of W5: (-15.0114114533053, 5.51324857214717, 6.75214383348495)
6. The parallels to L1, L2, L3 through A, B, C, resp. are concurrent at X(54).
7. The parallels to L1, L2, L3 through A', B', C', resp. are concurrent at X(6152).
8. The parallels to L1, L2, L3 through A*, B*, C*, resp. are concurrent at X(12300).
Angel Montesdeoca
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου