[Antreas P. Hatzipolakis]:
Let ABC be a triangle and P a point.
Denote:
(Oa), (Ob), (Oc) = the circumcircles of NBC, NCA, NAB, resp.
(O1), (O2), (O3) = the circumcircles of PBC, PCA, PAB, resp.
Ra, Rb, Rc = the radical axes of ((N),(Oa)), ((N),(Ob)), ((N),(Oc)), resp.
R1, R2, R3 = the radical axes of ((N),(O1)), ((N),(O2)), ((N),(O3)), resp.
AaBbCc = the triangle bounded by Ra, Rb, Rc
A1B2C3 = the triangle bounded by R1, R2, R3
AaBbCc = the triangle bounded by Ra, Rb, Rc
A1B2C3 = the triangle bounded by R1, R2, R3
Which is the locus of P such that:
1. AaBbCc, A1B2C3 are perspective.
The entire plane?
1. AaBbCc, A1B2C3 are perspective.
The entire plane?
The Euler line + Something_else ?
[Angel Montesdeoca]:
***AaBbCc, A1B2C3 are perspective for all P, with perspector the inverse-in-nine-point-circle of P.
*** The locus of P such that AaBbCc, A1B2C3 are orthologic is a bicircular circum-quartic passing through X(4) and X(5).
The fourth point of intersection of this quartic with the circumcircle is:
Z = 1 / (a^18 (b^2+c^2)
-a^16 (5 b^4+14 b^2 c^2+5 c^4)
+a^14 (8 b^6+45 b^4 c^2+45 b^2 c^4+8 c^6)
-a^12 (57 b^6 c^2+94 b^4 c^4+57 b^2 c^6)
+a^10 (-14 b^10+23 b^8 c^2+74 b^6 c^4+74 b^4 c^6+23 b^2 c^8-14 c^10)
+a^8 (14 b^12+19 b^10 c^2-29 b^8 c^4-32 b^6 c^6-29 b^4 c^8+19 b^2 c^10+14 c^12)
+a^6 b^2 c^2 (-41 b^10+30 b^8 c^2+2 b^6 c^4+2 b^4 c^6+30 b^2 c^8-41 c^10)
-a^4 (b^2-c^2)^2 (8 b^12-29 b^10 c^2-15 b^8 c^4-17 b^6 c^6-15 b^4 c^8-29 b^2 c^10+8 c^12)
+a^2 (b^2-c^2)^4 (5 b^10-8 b^8 c^2-15 b^6 c^4-15 b^4 c^6-8 b^2 c^8+5 c^10)
-(b^2-c^2)^6 (b^2+c^2)^2 (b^4-3 b^2 c^2+c^4) ) : ... : ....
with (6 - 9 - 13) - search numbers: 0.369196524616796, -0.457212835608297, 3.78679804904391
Angel Montesdeoca
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου