Παρασκευή 25 Οκτωβρίου 2019

HYACINTHOS 26905

[Antreas P. Hatzipolakis]:
 
Let ABC be a triangle and A'B'C' the pedal triangle of I.

Denote:

(Na), (Nb), (Nc) = the NPCs of IBC, ICA, IAB, resp.

A", B", C" = the antipodes of A', B', C' in (Na), (Nb), (Nc), resp.

The circumcircles of IA'A", IB'B", IC'C" are coaxial.

2nd, other than I, intersection?
 
 
[Peter Moses]:



Hi Antreas,

a (a^2-b^2-c^2) (2 a^7-a^6 b-4 a^5 b^2+a^4 b^3+2 a^3 b^4+a^2 b^5-b^7-a^6 c+8 a^5 b c-a^4 b^2 c-4 a^3 b^3 c+a^2 b^4 c-4 a b^5 c+b^6 c-4 a^5 c^2-a^4 b c^2+4 a^3 b^2 c^2-2 a^2 b^3 c^2+3 b^5 c^2+a^4 c^3-4 a^3 b c^3-2 a^2 b^2 c^3+8 a b^3 c^3-3 b^4 c^3+2 a^3 c^4+a^2 b c^4-3 b^3 c^4+a^2 c^5-4 a b c^5+3 b^2 c^5+b c^6-c^7)::
on the cubic K825 and these lines: {{1,84},{517,1295},{521,656},{971,15500},{1259,6617},{1319,1364},{1439,14878},{1785,6357},{3057,7335},{6259,7952}}.
incircle inverse of X(1071).
Conway circle inverse of X(12547).
crossdifference of every pair of points on line X(19) X(14298).

Best regards,
Peter Moses.
 

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου