[Kadir Altintas]:
Let ABC be a triangle and (Oi), i=1,2,3,4 four congruent circles such that:
(O1) touches AB, AC and (O4)
(O2) touches BC, BA and (O4)
(O3) touches CA, CB and (O4)
Let P, Q, R be the touchpoints of the circles (O1), (O2), (O3) and (O4), resp.
The incenter of PQR lies on the OI line.
(O1) touches AB, AC and (O4)
(O2) touches BC, BA and (O4)
(O3) touches CA, CB and (O4)
Let P, Q, R be the touchpoints of the circles (O1), (O2), (O3) and (O4), resp.
The incenter of PQR lies on the OI line.
[Peter Moses]:
Hi Antreas,
P = {(a-b-c) (2 a^2-b^2+2 b c-c^2),b^2 (-a+b-c),-(a+b-c) c^2}.
O4 = X(35)
O1 = {a^4-2 a^2 b^2+b^4-a^2 b c-2 a^2 c^2-2 b^2 c^2+c^4,-a b^2 c,-a b c^2}.
I' = midpoint X(1) X(35) = X(2646).
radius of the 4 circles = r R / (2 r + R).
radius incircle of PQR = r^2 / (2 r + R).
Best regards,
Peter Moses.
****************************** *
[Kadir Altintas]
Thank you, Mr. Peter Moses
ABC, PQR are perspective.
Perspector?
[Kadir Altintas]
Thank you, Mr. Peter Moses
ABC, PQR are perspective.
Perspector?
>ABC, PQR are perspective.X(55).
Perspective to lots of triangles.
For example:
medial at X(5432).
anticomplementary at X(5218)
Euler at X(5217).
Paralogic with the Brocard triangle at:
(a-b-c) (2 a^6-3 a^4 b^2+2 a^2 b^4+2 a^4 b c-2 a^2 b^3 c-3 a^4 c^2+2 a^2 b^2 c^2-b^4 c^2-2 a^2 b c^3+2 b^3 c^3+2 a^2 c^4-b^2 c^4)::
on lines {{2,12354},{3,3027},{11,620},{20,12184},{35,2782},{55,99},{98,5217},{114,6284},{115,5432},...}
and X(6).
Many orthologics too.
Best regards,
Peter Moses.
Peter Moses.
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου