[Kadir Altintas]:
Let ABC be a triangle, P a point and DEF the cevian triangle of P.
Denote:
Gamma_P = the circumconic through G_P, K_P = centroid, symmedian poin of DEF, resp.
1. For P = H, the Gamma_H passes through K = symmedian point of ABC
Let ABC be a triangle, P a point and DEF the cevian triangle of P.
Denote:
Gamma_P = the circumconic through G_P, K_P = centroid, symmedian poin of DEF, resp.
1. For P = H, the Gamma_H passes through K = symmedian point of ABC
2. G_H = X(51), K_H = X(53)
Gamma_H passes through Xi for i =216,288,343.2052.2351
Questions
-- Is this conic known?
Gamma_H passes through Xi for i =216,288,343.2052.2351
Questions
-- Is this conic known?
-- More points it passes through?
For P=H, the conic has the following properties:
a) Barycentric equation: ∑ [ (SB-SC)*(S^2+SB*SC)*SA*a^2*y*z ] = 0
b) It passes through these ETC's: 6, 51, 53, 216, 288, 343, 2052, 2351, 11077, 14582
c) isogonal conjugate of the line {2, 95, 97, 233, 275, 317, 577, 3087, 4993, 6709, 8882, 10311, 10313, 10314, 14590, 14918}
d) isotomic conjugate of the line { 76, 275, 276, 394, 458}
e) Center:
Oh = SA*(SB+SC)*(2*S^2+SA^2+2*SB* SC-SW^2)*(S^2+SB*SC)*(8*(SB+ SC)*R^2-S^2-(SB+SC)^2-SW^2) : : (barycentrics)
= ((6*S^2+4*SW^2)*R^2-(S^2+SW^ 2)*SW)^2*X(3269)-16*(4*R^2-SW) *(6*SW*R^2-S^2-SW^2)*S^2*R^2* X(7668)
= on lines: {3269, 7668}
= [ 0.5267084728631982, 0.7080816533196879, 2.9073578882877350 ]
f) Perspector:
Qh = midpoint of X(4) and X(15412)
= SA*(SB^2-SC^2)*(S^2+SB*SC) : : (barycentrics)
= 4*X(647)-X(9409)
= lies on: Lemoine axis {187, 237}
= on lines: {4, 15412}, {130, 3269}, {137, 5099}, {187, 237}, {403, 523}, {525, 684}, {826, 3574}, {878, 10547}, {1157, 1510}, {1568, 6368}, {10254, 14592}, {14380, 14483}
= midpoint of X(4) and X(15412)
= [ -1.4233329649307620, -1.6136683849941520, 5.4147424245637590 ]
------------------------------ ------------------------------ ------------------------------ -------
For P=G, the conic has the following properties
a) Equation: ∑ [ (b^4-c^4)*y*z ] = 0
b) Through ETC's: 2, 66, 141, 427, 1031, 1502, 3613, 8024, 8801, 9076, 9483, 14617
c) isogonal conjugate of the line {6, 22}
d) isotomic conjugate of the line {2, 32}
e) Center:
Og = complement of X(4577)
= (b^4-c^4)^2 : : (barycentrics) very simple coordinates!!!
= on the Steiner inellipse and lines: {2, 4577}, {4, 14718}, {32, 14378}, {66, 9233}, {115, 9479}, {125, 1084}, {570, 11672}, {1031, 9483}, {2482, 6292}, {3005, 8288}, {6697, 8265}, {14416, 14424}
= midpoint of X(i) and X(j) for these {i,j}: {4, 14718}, {1031, 9483}
= complement of X(4577)
= [ 3.0418628936780470, 3.1146841905255340, 0.0804079375383724 ]
f) perspector = X(826)
César Lozada
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου