Denote:
A"B"C" = the reflection of ABC in P
The circuncircles of HA'A", HB'B", HC'C" are coaxial.
2nd, other than H, intersections?
Locus of P?
**** The locus of P such that the circuncircles of HA'A", HB'B", HC'C" are coaxial is the cubic cgK376, complement of isogonal conjugate of K376 (Orthocubic's sister cubic of catalogue CTC, Bernard Gibert).
Barycentric equation of cgK376:
a^4 b^2 x^3-2 a^2 b^4 x^3+b^6 x^3-a^4 c^2 x^3+b^4 c^2 x^3+2 a^2 c^4 x^3-b^2 c^4 x^3-c^6 x^3+a^6 x^2 y-2 a^4 b^2 x^2 y+a^2 b^4 x^2 y+a^4 c^2 x^2 y-b^4 c^2 x^2 y-5 a^2 c^4 x^2 y-2 b^2 c^4 x^2 y+3 c^6 x^2 y-a^4 b^2 x y^2+2 a^2 b^4 x y^2-b^6 x y^2+a^4 c^2 x y^2-b^4 c^2 x y^2+2 a^2 c^4 x y^2+5 b^2 c^4 x y^2-3 c^6 x y^2-a^6 y^3+2 a^4 b^2 y^3-a^2 b^4 y^3-a^4 c^2 y^3+b^4 c^2 y^3+a^2 c^4 y^3-2 b^2 c^4 y^3+c^6 y^3-a^6 x^2 z-a^4 b^2 x^2 z+5 a^2 b^4 x^2 z-3 b^6 x^2 z+2 a^4 c^2 x^2 z+2 b^4 c^2 x^2 z-a^2 c^4 x^2 z+b^2 c^4 x^2 z+3 a^6 y^2 z-5 a^4 b^2 y^2 z+a^2 b^4 y^2 z+b^6 y^2 z-2 a^4 c^2 y^2 z-2 b^4 c^2 y^2 z-a^2 c^4 y^2 z+b^2 c^4 y^2 z-a^4 b^2 x z^2-2 a^2 b^4 x z^2+3 b^6 x z^2+a^4 c^2 x z^2-5 b^4 c^2 x z^2-2 a^2 c^4 x z^2+b^2 c^4 x z^2+c^6 x z^2-3 a^6 y z^2+2 a^4 b^2 y z^2+a^2 b^4 y z^2+5 a^4 c^2 y z^2-b^4 c^2 y z^2-a^2 c^4 y z^2+2 b^2 c^4 y z^2-c^6 y z^2+a^6 z^3+a^4 b^2 z^3-a^2 b^4 z^3-b^6 z^3-2 a^4 c^2 z^3+2 b^4 c^2 z^3+a^2 c^4 z^3-b^2 c^4 z^3=0.
Points on cgK376: A, B, C, midpoints of ABC, circuncenter, orthocenter, center of the nine-point circle.
**** 2nd, other than H, intersections of circuncircles of HA'A", HB'B", HC'C":
P=X(3) -> W= X(4)X(64) /\ X(974)X(12004)
W = (a^2-b^2-c^2) (3 a^4-2 a^2 (b^2+c^2)-(b^2-c^2)^2)
(2 a^16
-a^14 (b^2+c^2)
-13 a^12 (b^2-c^2)^2-(b^2-c^2)^8
+11 a^10 (b^2-c^2)^2 (b^2+c^2)
+a^8 (b^2-c^2)^2 (35 b^4-54 b^2 c^2+35 c^4)
-a^6 (b^2-c^2)^2 (67 b^6-51 b^4 c^2-51 b^2 c^4+67 c^6)
+a^4 (b^2-c^2)^4 (41 b^4+94 b^2 c^2+41 c^4)
-a^2 (b^2-c^2)^4 (7 b^6+41 b^4 c^2+41 b^2 c^4+7 c^6) ) : .... : .....
On lines: {4,64}, {974,12004}
(6 - 9 - 13) - search numbers of W: (7.05018113511390, 7.02917267360016, -4.47961558525291).
P=X(5) -> X(2072) = inverse-in-nine-point-circle of X(3).
Angel Montesdeoca
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου