[Antreas P. Hatzipolakis]:
Let ABC be a triangle, A'B'C' the pedal triangle of H and P a point.
Denote:
Na, Nb, Nc = the NPC centers of PBC, PCA, PAB, resp.
A", B", C" = the orthogonal projections of Na, Nb, Nc on AA', BB', CC', resp.
N1, N2, N3 = the NPC centers of A"BC, B"CA, C"AB, resp.
Which is the locus of P such that ABC, N1N2N3 are orthologic ?
[Peter Moses]:
Denote:
Na, Nb, Nc = the NPC centers of PBC, PCA, PAB, resp.
A", B", C" = the orthogonal projections of Na, Nb, Nc on AA', BB', CC', resp.
N1, N2, N3 = the NPC centers of A"BC, B"CA, C"AB, resp.
Which is the locus of P such that ABC, N1N2N3 are orthologic ?
The entire plane? If yes:
1. Which are the orthologic centers in terms of P?
2. Which are the loci of the orthologic centers as P moves on the Euler line?
1. Which are the orthologic centers in terms of P?
2. Which are the loci of the orthologic centers as P moves on the Euler line?
Hi Antreas,
1)
(ABC, N1N2N3) = a^2 p ((a^2 b^2-b^4+a^2 c^2+2 b^2 c^2-c^4) p^2+a^2 (a^2-b^2+c^2) p q+a^2 (a^2+b^2-c^2) p r+2 a^4 q r) ((2 a^2+b^2-2 c^2) (a^2-b^2-c^2) p q+(a^4+a^2 b^2-2 b^4-2 a^2 c^2+b^2 c^2+c^4) q^2+2 b^4 p r+(2 a^2-b^2-2 c^2) (a^2+b^2-c^2) q r) ((2 a^4-5 a^2 b^2+3 b^4-4 a^2 c^2-3 b^2 c^2+2 c^4) p q+(a^4-3 a^2 b^2+2 b^4-2 a^2 c^2-3 b^2 c^2+c^4) q^2+2 b^4 p r+(2 a^4-3 a^2 b^2+3 b^4-4 a^2 c^2-5 b^2 c^2+2 c^4) q r) (2 c^4 p q+(a^2-b^2-c^2) (2 a^2-2 b^2+c^2) p r+(2 a^2-2 b^2-c^2) (a^2-b^2+c^2) q r+(a^4-2 a^2 b^2+b^4+a^2 c^2+b^2 c^2-2 c^4) r^2) (2 c^4 p q+(2 a^4-4 a^2 b^2+2 b^4-5 a^2 c^2-3 b^2 c^2+3 c^4) p r+(2 a^4-4 a^2 b^2+2 b^4-3 a^2 c^2-5 b^2 c^2+3 c^4) q r+(a^4-2 a^2 b^2+b^4-3 a^2 c^2-3 b^2 c^2+2 c^4) r^2)::
(N1N2N3, ABC) = X(5).
For P = O
(ABC, N1N2N3) = a^2 (a^2-b^2-c^2) (a^6-a^4 b^2-a^2 b^4+b^6-3 a^4 c^2-a^2 b^2 c^2-3 b^4 c^2+3 a^2 c^4+3 b^2 c^4-c^6) (a^6-3 a^4b^2+3 a^2 b^4-b^6-a^4 c^2-a^2 b^2 c^2+3 b^4 c^2-a^2 c^4-3 b^2 c^4+c^6)::
on lines {{2,13418},{4,13585},{6,3205}, {54,5946},{68,10255},{6
Best regards,
Peter Moses.
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου