Πέμπτη 24 Οκτωβρίου 2019

HYACINTHOS 26664

 [Antreas P. Hatzipolakis]:
 

Let ABC be a triangle.

The Euler line of ABC intersects BC, CA, AB at A1, B1, C1, resp.
The Euler line of the orthic triangle intersects BC, CA, AB at A2, B2, C2, resp.

The Euler lines of NA1A2, NB1B2, NC1C2 bound a triangle A*B*C*.

ABC, A*B*C* are parallelogic.


[Peter Moses]:
 

Hi Antreas,

A nice point ...
b^2 c^2 (a^2-a b+b^2-c^2)^2 (a^2+a b+b^2-c^2)^2 (-a^2+b^2-a c-c^2)^2 (-a^2+b^2+a c-c^2)^2 (a^4-2 a^2 b^2+b^4-a^2 c^2-b^2 c^2) (-a^4+a^2 b^2+2 a^2 c^2+b^2 c^2-c^4):: 
on line {476,1141}.
X(51)-cross conjugate of X(1989).
isoconjugate of X(j) and X(j) for these (i,j): {{323, 2290}, {1154, 6149}}.
cevapoint of X(51) and X(1989).
barycentric product X(i)X(j) for these {i,j}: {{94, 1141}, {276, 14595}}.
barycentric quotient X(i)/X(j) for these {i,j}: {{94, 1273}, {1141, 323}, {1989, 1154}, {8882, 3043}, {14595, 216}}.

and a terrible one ...
(2 a^4-a^2 b^2-b^4-a^2 c^2+2 b^2 c^2-c^4) (a^32 b^4-12 a^30 b^6+64 a^28 b^8-196 a^26 b^10+363 a^24 b^12-352 a^22 b^14-66 a^20 b^16+792 a^18 b^18-1353 a^16 b^20+1364 a^14 b^22-924 a^12 b^24+428 a^10 b^26-131 a^8 b^28+24 a^6 b^30-2 a^4 b^32+2 a^32 b^2 c^2-21 a^30 b^4 c^2+101 a^28 b^6 c^2-292 a^26 b^8 c^2+563 a^24 b^10 c^2-779 a^22 b^12 c^2+882 a^20 b^14 c^2-1032 a^18 b^16 c^2+1344 a^16 b^18 c^2-1571 a^14 b^20 c^2+1377 a^12 b^22 c^2-836 a^10 b^24 c^2+331 a^8 b^26 c^2-77 a^6 b^28 c^2+8 a^4 b^30 c^2+a^32 c^4-21 a^30 b^2 c^4+126 a^28 b^4 c^4-380 a^26 b^6 c^4+683 a^24 b^8 c^4-780 a^22 b^10 c^4+577 a^20 b^12 c^4-285 a^18 b^14 c^4+99 a^16 b^16 c^4+35 a^14 b^18 c^4-180 a^12 b^20 c^4+234 a^10 b^22 c^4-151 a^8 b^24 c^4+46 a^6 b^26 c^4-3 a^4 b^28 c^4-a^2 b^30 c^4-12 a^30 c^6+101 a^28 b^2 c^6-380 a^26 b^4 c^6+814 a^24 b^6 c^6-1071 a^22 b^8 c^6+872 a^20 b^10 c^6-358 a^18 b^12 c^6-162 a^16 b^14 c^6+489 a^14 b^16 c^6-536 a^12 b^18 c^6+391 a^10 b^20 c^6-223 a^8 b^22 c^6+102 a^6 b^24 c^6-33 a^4 b^26 c^6+7 a^2 b^28 c^6-b^30 c^6+64 a^28 c^8-292 a^26 b^2 c^8+683 a^24 b^4 c^8-1071 a^22 b^6 c^8+1126 a^20 b^8 c^8-785 a^18 b^10 c^8+435 a^16 b^12 c^8-246 a^14 b^14 c^8+107 a^12 b^16 c^8-115 a^10 b^18 c^8+234 a^8 b^20 c^8-185 a^6 b^22 c^8+51 a^4 b^24 c^8-18 a^2 b^26 c^8+12 b^28 c^8-196 a^26 c^10+563 a^24 b^2 c^10-780 a^22 b^4 c^10+872 a^20 b^6 c^10-785 a^18 b^8 c^10+390 a^16 b^10 c^10-152 a^14 b^12 c^10+320 a^12 b^14 c^10-252 a^10 b^16 c^10-154 a^8 b^18 c^10+151 a^6 b^20 c^10+75 a^4 b^22 c^10+14 a^2 b^24 c^10-66 b^26 c^10+363 a^24 c^12-779 a^22 b^2 c^12+577 a^20 b^4 c^12-358 a^18 b^6 c^12+435 a^16 b^8 c^12-152 a^14 b^10 c^12-328 a^12 b^12 c^12+150 a^10 b^14 c^12+356 a^8 b^16 c^12-108 a^6 b^18 c^12-401 a^4 b^20 c^12+25 a^2 b^22 c^12+220 b^24 c^12-352 a^22 c^14+882 a^20 b^2 c^14-285 a^18 b^4 c^14-162 a^16 b^6 c^14-246 a^14 b^8 c^14+320 a^12 b^10 c^14+150 a^10 b^12 c^14-524 a^8 b^14 c^14+47 a^6 b^16 c^14+782 a^4 b^18 c^14-63 a^2 b^20 c^14-495 b^22 c^14-66 a^20 c^16-1032 a^18 b^2 c^16+99 a^16 b^4 c^16+489 a^14 b^6 c^16+107 a^12 b^8 c^16-252 a^10 b^10 c^16+356 a^8 b^12 c^16+47 a^6 b^14 c^16-954 a^4 b^16 c^16+36 a^2 b^18 c^16+792 b^20 c^16+792 a^18 c^18+1344 a^16 b^2 c^18+35 a^14 b^4 c^18-536 a^12 b^6 c^18-115 a^10 b^8 c^18-154 a^8 b^10 c^18-108 a^6 b^12 c^18+782 a^4 b^14 c^18+36 a^2 b^16 c^18-924 b^18 c^18-1353 a^16 c^20-1571 a^14 b^2 c^20-180 a^12 b^4 c^20+391 a^10 b^6 c^20+234 a^8 b^8 c^20+151 a^6 b^10 c^20-401 a^4 b^12 c^20-63 a^2 b^14 c^20+792 b^16 c^20+1364 a^14 c^22+1377 a^12 b^2 c^22+234 a^10 b^4 c^22-223 a^8 b^6 c^22-185 a^6 b^8 c^22+75 a^4 b^10 c^22+25 a^2 b^12 c^22-495 b^14 c^22-924 a^12 c^24-836 a^10 b^2 c^24-151 a^8 b^4 c^24+102 a^6 b^6 c^24+51 a^4 b^8 c^24+14 a^2 b^10 c^24+220 b^12 c^24+428 a^10 c^26+331 a^8 b^2 c^26+46 a^6 b^4 c^26-33 a^4 b^6 c^26-18 a^2 b^8 c^26-66 b^10 c^26-131 a^8 c^28-77 a^6 b^2 c^28-3 a^4 b^4 c^28+7 a^2 b^6 c^28+12 b^8 c^28+24 a^6 c^30+8 a^4 b^2 c^30-a^2 b^4 c^30-b^6 c^30-2 a^4 c^32):: 
on no lines.

Best regards,
Peter Moses.
 

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου