Let ABC be a triangle and let AK, AL be isogonal lines from A ie BAK = LAC = a [in the figure is a typo: is d instead of a <actually there is no typo, simply a looks like d>] and similarly BK', BL' isogonal lines from B ie CBK' = ABL' = b and CK", CL" isogonal lines from C ie ACK' = BCL" = c [I added K', L'.K".L" in the figure]
Denote:
AK /\ BL' = P, BK' /\ CL" = Q, CK"/\ AL = R and
The triangles PQR, P'Q'R' are perspective.
Sur un theoreme de la theorie du triangle par. M. D. Ghiocas (Athenes)
Actes Congres Interbalkan. Math., Athenes 1934, p. 103-104
Let ABC be a triangle.
Let AAb, AAc be two isogonal cevians from A, ie angles BAAb = CAAc = α [: lower case Greek letter alpha]
CCa, CCb rwo isogonal cevians from C, ie angles ACCa = BCCb = γ [: lower case Greek letter gamma].
Denote:
BBc /\ CCb = A'
CCa /\ AAc = B'
AAb /\ BBa = C'
BBa /\ CCa = A"
CCb /\ AAb = B"
AAc /\ BBc = C"
The triangles A'B'C', A"B"C" are perspective.
Loci (complicated !)
1. Let α = β = γ : = ω [ : lower case Greek letter omega]
Which is the locus of the perspector of A'B'C', A"B"C" as ω varies ?
2. Let α = A/t, β = B/t, γ = C/t
Which is the locus of the perspector of A'B'C', A"B"C" as t varies ?
Antreas P. Hatzipolakis
1) A’B’C’ and ABC are perspective with perspector
Q’ = sin(A)/sin(A-α) : : (trilinears)
2) A”B”C” and ABC are perspective with perspector
Q” = sin(A-α)/sin(A) : : (trilinears) = isogonal conjugate of Q’
3) A’B’C’ and A”B”C” are perspective with perspector
Q = sin(α)*sin(B-β)*sin(C-γ) + sin(A-α)*sin(β)*sin(γ) : : (trilinears)
I would expect that α, β, γ should be symmetrical quantities for such perspectivities, ie, α=f(a,b,c), β=f(b,c,a) and γ=f(c,a,b) for some homogeneous function f, but surprisingly (at least for me), these three perspectivities occur for any arbitrary values of α, β, γ. Moreover, Q, Q’ and Q” are collinear.
Particular case:
If α = β = γ = θ ≠ 0 then
a) Q(θ) = sin(θ)*sin(A- θ)+sin(B- θ)*sin(C- θ) : : (trilinears)
= cos(2*θ)*cos(A)+cos(B)*cos(C) : : (trilinears)
b) Q(θ) lies on the Euler line of ABC and Q(θ)=2*cos(2* θ)*X(3)+X(4)
c) Q(-θ) = Q(θ) and Q(θ+k*Pi)=Q(θ), for any integer k
d) Q(Pi/2-θ) = Q(k*Pi/2+θ)
e) Q(Pi/2-θ) and Q(Pi/2+θ) are harmonic conjugates w/r to O and H
f) Q(Pi/3) = X(30) && Q(Pi)=X(2)
g) If P(t) is on the Euler line of ABC such that OP/OH=t, the required θ for Q(θ)=P(t) satisfies cos(θ)^2=(t+1)/(4*t). Therefore, the actual range of the transformation θ ->P is {Euler line}-segment (X(20), X(3)), X(20) excluded.
Some Q(θ):
Q(Pi/12) = sqrt(3)*cos(A)+2*cos(B)*cos(C) : : (trilinears)
= sqrt(3)*X(3)+X(4) = X(4)-3*X(2044)
= On lines: {2, 3}, {15, 3071}, {16, 3070}, {17, 615}, {18, 590}, {371, 398}, {372, 397}, {395, 8960}, {623, 642}, {624, 641}, {1151, 5339}, {1152, 5340}, {1587, 11486}, {1588, 11485}, {5318, 6396}, {5321, 6200}, {5334, 6221}, {5335, 6398}, {5343, 6449}, {5344, 6450}, {5365, 6455}, {5366, 6456}, {8976, 11489}, {8981, 11543}, {11488, 13951}, {11542, 13966}
= midpoint of X(2041) and X(3529)
= reflection of Q(5*Pi/12) in X(550)
= {X(i),X(j)}-Harmonic conjugate of X(k) for these (i,j,k): (2, 2041, 632), (3, 4, Q(5*Pi/12)), (3, 382, 2043), (4, 2046, 5), (376, 5073, Q(5*Pi/12)), (382, 3522, Q(5*Pi/12)), (472, 1593, 4185), (1884, 1904, 9714), (2567, 6861, 24), (3530, 3858, Q(5*Pi/12)), (3843, 10299, Q(5*Pi/12)), (5576, 7495, Q(5*Pi/12)), (7524, 13737, 7412)
= [ 2.222058865220567, 1.34667709493024, 1.682783939930878 ]
Q(Pi/6) = X(5)
Q(Pi/4) = X(4)
Q(Pi/3) = X(30)
Q(5*Pi/12) = -sqrt(3)*cos(A)+2*cos(B)*cos( C) : : (trilinears)
= -sqrt(3)*X(3)+X(4) = X(4)-3*X(2043)
= On lines: {2, 3}, {15, 3070}, {16, 3071}, {17, 590}, {18, 615}, {371, 397}, {372, 398}, {396, 8960}, {623, 641}, {624, 642}, {1151, 5340}, {1152, 5339}, {1587, 11485}, {1588, 11486}, {5318, 6200}, {5321, 6396}, {5334, 6398}, {5335, 6221}, {5343, 6450}, {5344, 6449}, {5365, 6456}, {5366, 6455}, {8976, 11488}, {8981, 11542}, {11489, 13951}, {11543, 13966}
= midpoint of X(2042) and X(3529)
= reflection of Q(Pi/12) in X(550)
= Inverse of X(7734) in the radical circle of Stammler circles
= {X(i),X(j)}-Harmonic conjugate of X(k) for these (i,j,k): (3, 4, Q(Pi/12)), (3, 382, 2044), (4, 2045, 5), (376, 5073, Q(Pi/12)), (381, 3523, Q(Pi/12)), (382, 3522, Q(Pi/12)), (2041, 2043, 3), (2041, 2045, 4), (3134, 13737, 6983), (3135, 3546, 6913), (3530, 3858, Q(Pi/12)), (3843, 10299, Q(Pi/12)), (5576, 7495, Q(Pi/12)) = [ 23.801649228295010, 22.86933995374934, -23.177332052978250 ]
Q(Pi/2) = X(20)
> Which is the locus of the perspector of A'B'C', A"B"C" as t varies ?
Locus?: I don’t know which is the locus of Q, but I can assure that it is not a straight line.
César Lozada
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου