Πέμπτη 24 Οκτωβρίου 2019

HYACINTHOS 26559

 
[César Lozada]:

Let ABC be a triangle, P a point and A'B'C' the antipedal triangle of P.

BP, CP intersect B'C' at Ab, Ac, resp.

CP, AP intersect C'A' at Bc, Ba, resp.
AP, BP intersect A'B' at Ca, Cb, resp.

Which is the locus of P such that the perpendicular bisectors of AbAc, BcBa, CaCb are concurrent at Q(P)?

 

The locus is = {Line at infinity} \/ { circles with segment-sides of ABC as diameters} \/ { Gibert’s curve Q030, through ETC’s 1, 4, 13, 14, 74, 80}  

 

ETC pairs (P,Q(P)) = (1,40), (13, 13), (14,14), (74, 9934)

 

Q( X(4) ) = X(3)X(66) ∩ X(4)X(51)

= a^10-3*(b^2+c^2)*a^8+4*(b^4-b^ 2*c^2+c^4)*a^6-4*(b^4-c^4)*(b^ 2-c^2)*a^4+3*(b^4-c^4)^2*a^2-( b^4-c^4)*(b^2-c^2)^3 : : (barycentrics)

= 4*cos(B-C)+cos(A)*(2*cos(2*(B- C))-7)+cos(3*A) : : (trilinears)

= 3*X(3)-4*X(6696) = 3*X(4)-X(6225) = 2*X(5)-3*X(1853) = 3*X(64)-X(5925) = 4*X(140)-3*X(154) = X(1498)-3*X(1853) = 3*X(5878)-2*X(6225) = X(5878)+2*X(12324) = X(6225)+3*X(12324) = 3*X(6247)-2*X(6696)

= On lines:

{2, 6759}, {3, 66}, {4, 51}, {5, 1498}, {6, 1595}, {20, 2888}, {30, 64}, {70, 74}, {125, 3542}, {133, 6526}, {140, 154}, {182, 5596}, {184, 3541}, {206, 13336}, {221, 495}, {343, 11414}, {355, 5836}, {381, 2883}, {382, 13093}, {427, 1181}, {485, 12964}, {486, 12970}, {496, 2192}, {499, 10535}, {511, 11411}, {542, 2892}, {548, 8567}, {550, 10606}, {569, 11179}, {578, 3088}, {631, 10282}, {858, 11441}, {1204, 13399}, {1370, 5562}, {1478, 7355}, {1479, 6285}, {1495, 3147}, {1593, 6146}, {1594, 11456}, {1597, 12241}, {1598, 13567}, {1619, 6642}, {1657, 5894}, {1872, 5928}, {1907, 10982}, {2393, 10625}, {2777, 3146}, {2781, 6243}, {2917, 7525}, {3091, 5643}, {3410, 3522}, {3523, 11202}, {3526, 10192}, {3546, 9306}, {3548, 10539}, {3575, 10605}, {3583, 12950}, {3585, 12940}, {3627, 5895}, {3818, 7401}, {3819, 11487}, {3843, 5893}, {4846, 6145}, {5418, 10533}, {5420, 10534}, {5480, 11432}, {5654, 13371}, {5810, 6907}, {5889, 7391}, {5907, 6643}, {6102, 6293}, {6221, 8991}, {6284, 10060}, {6398, 13980}, {6640, 10540}, {6756, 9786}, {7354, 10076}, {7386, 11793}, {7387, 12359}, {7392, 11695}, {7487, 11438}, {7507, 12174}, {7528, 9730}, {7544, 10574}, {8550, 11426}, {10113, 11744}, {10117, 10264}, {10182, 10303}, {10201, 13561}, {10274, 11003}, {10628, 12284}, {11598, 12121}, {11818, 13630}, {12084, 12118}, {12383, 13293}, {12586, 12675}

= midpoint of X(i) and X(j) for these {i,j}: {4, 12324}, {382, 13093}, {3146, 12250}, {12317, 13203}

= reflection of X(i) in X(j) for these (i,j): (3, 6247), (20, 3357), (1352, 66), (1498, 5), (1657, 5894), (5596, 182), (5878, 4), (5895, 3627), (6193, 13346), (6293, 6102), (7387, 12359), (9833, 3), (9934, 125), (10117, 10264), (11744, 10113), (12118, 12084), (12121, 11598), (12315, 2883), (12383, 13293)

= anticomplement of X(6759)

= anticomplementary circle-inverse-of-X(6761)

= {X(i),X(j)}-Harmonic conjugate of X(k) for these (i,j,k): (4, 11433, 10110), (4, 11457, 1899), (185, 11550, 4), (381, 12315, 2883), (631, 11206, 10282), (1498, 1853, 5), (1907, 11245, 10982), (3818, 9729, 7401), (7528, 9730, 9815), (11438, 13419, 7487), (12278, 13445, 20)

= [ 19.168341760916870, 20.78986994641083, -19.599249370646290 ]

 

Q( X(80) ) = Reflection of X(40) in X(11)

= a^7-(2*b^2+3*b*c+2*c^2)*a^5-(b +c)*(b^2-7*b*c+c^2)*a^4+(b^4+c ^4+3*b*c*(b^2-4*b*c+c^2))*a^3+ (b^2-c^2)*(b-c)*(2*b-c)*(b-2* c)*a^2-(b^2-c^2)^3*(b-c) : : (barycentrics)

= 2*sin(A/2)*(6*cos((B-C)/2)-cos (3*(B-C)/2))+3*cos(A)+cos(2*A) -6 : : (trilinears)

= 2*X(119)-3*X(1699) = 3*X(165)-4*X(6713) = 2*X(214)-3*X(5603) = 2*X(1145)-3*X(5587) = 4*X(1387)-3*X(3576) = 4*X(1484)-3*X(11219) = 3*X(1699)-X(5541) = 4*X(3035)-5*X(8227) = 3*X(5603)-X(13199) = 3*X(11219)-2*X(12515)

= On lines:

On lines:

{1, 5840}, {4, 2802}, {11, 40}, {20, 11715}, {30, 12737}, {46, 5533}, {65, 13274}, {80, 517}, {100, 946}, {104, 516}, {119, 1699}, {149, 151}, {153, 9802}, {165, 6713}, {214, 5603}, {497, 12736}, {515, 1320}, {528, 1537}, {529, 11256}, {952, 3627}, {1145, 5587}, {1317, 1836}, {1387, 3576}, {1482, 7972}, {1484, 5535}, {1768, 9589}, {1770, 10074}, {2077, 10090}, {2093, 12832}, {2099, 12743}, {2809, 10772}, {2817, 10777}, {2829, 6264}, {3035, 8227}, {3057, 13273}, {3149, 13205}, {3585, 12749}, {3898, 6951}, {4295, 5083}, {4301, 10698}, {5057, 12531}, {5119, 8068}, {5180, 12532}, {5443, 11849}, {5657, 6702}, {5660, 12331}, {5697, 10057}, {5805, 9945}, {5854, 5881}, {5856, 11372}, {6284, 11014}, {7743, 13528}, {8148, 12747}, {9612, 10956}, {9616, 13913}, {9897, 11531}, {10058, 11012}, {10087, 12047}, {10265, 10707}, {10624, 10902}, {10993, 11522}, {11571, 12750}, {12608, 13278}, {12619, 12702}, {12672, 13271}, {12763, 13600}

= midpoint of X(i) and X(j) for these {i,j}: {149, 962}, {153, 9802}, {1320, 10724}, {1768, 9589}, {5691, 12653}, {8148, 12747}, {9897, 11531}

= reflection of X(i) in X(j) for these (i,j): (20, 11715), (40, 11), (80, 10738), (100, 946), (5541, 119), (6326, 1537), (7972, 1482), (10698, 4301), (10993, 11729), (12119, 1), (12331, 12611), (12515, 1484), (12702, 12619), (12751, 4), (13199, 214), (13528, 7743)

= {X(i),X(j)}-Harmonic conjugate of X(k) for these (i,j,k): (1484, 12515, 11219), (1699, 5541, 119), (5603, 13199, 214), (9802, 9812, 153), (12331, 12611, 5660), (12700, 12701, 40)

= [ -6.588147036445251, -3.35409225332791, 9.003411597186124 ]

 

 

César Lozada

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου