[Tran Quang Hung]:
Let ABC be a triangle with orthocenter H.
[Angel Montesdeoca]:
Brocard axis of triangle HBC is da.
da meets line HA at A'. Similarly, we have B',C'.
da meets line B'C' at A''. Similarly, we have B'',C''.
Then triangle ABC and A''B''C'' are perspective. Which is the perspector ?
[Angel Montesdeoca]:
The perspector of triangles ABC and A''B''C'' is
W = ((-a^2+b^2-c^2) (a^2+b^2-c^2) (a^4-2 a^2 b^2+b^4-2 a^2 c^2+c^4) (-a^2 b^2+b^4-a^2 c^2-2 b^2 c^2+c^4) (-a^6 b^2+3 a^4 b^4-3 a^2 b^6+b^8-2 a^6 c^2+a^4 b^2 c^2+4 a^2 b^4 c^2-3 b^6 c^2+4 a^4 c^4+a^2 b^2 c^4+3 b^4 c^4-2 a^2 c^6-b^2 c^6) (2 a^6 b^2-4 a^4 b^4+2 a^2 b^6+a^6 c^2-a^4 b^2 c^2-a^2 b^4 c^2+b^6 c^2-3 a^4 c^4-4 a^2 b^2 c^4-3 b^4 c^4+3 a^2 c^6+3 b^2 c^6-c^8) : ... : ....).
W lies on lines X(i)X(j) for these {i, j}: {4,216}, {52,11547}, {324,6750}.
(6 - 9 - 13) - search numbers of W: (-0.580799992444424, 0.237807788430956, 3.74408985566037).
Angel Montedeoca
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου