[Tran Quang Hung]:
Let ABC be a triangle.
A',B',C' are midpoints of BC,CA,AB.
N is NPC center of ABC.
A'',B'',C'' are isogonal conjugate of N wrt AB'C',BC'A',CA'B', respectively.
Then orthocenter of A''B''C'' lies on Euler line of ABC.
Which is this point ?
[César Lozada]:
H” = complement of X(13150)
= SB*SC*((5*R^2-2*SW)*SA+3*(2*R^ 2-SW)*R^2+2*S^2) : : (barycentrics)
= On lines: {2, 3}, {6750, 12300}
= complement of X(13150)
= {X(i),X(j)}-Harmonic conjugate of X(k) for these (i,j,k): (1884, 7546, 444), (1884, 13852, 4238), (2675, 7557, 6622), (3147, 13362, 7401), (6906, 7557, 13383), (8368, 11099, 14035)
= [ 7.715803135082416, 6.82592872869296, -4.646118392610322 ]
César Lozada
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου