[Antreas P. Hatzipolakis]:
Let ABC be a triangle.
Denote:
Na, Nb, Nc = the NPC centers of NBC, NCA, NAB, resp.
Ma, Mb, Mc = the midpoints of AN, BN, CN, resp.
P = the Poncelet Point of (ABCN)
(ie the point the NPCs of ABC, NBC, NCA, NAB are concurrent at).
The circumcircles of PNaMa, PNbMb, PNcMc are coaxial.
Second intersection?
Denote:
Na, Nb, Nc = the NPC centers of NBC, NCA, NAB, resp.
Ma, Mb, Mc = the midpoints of AN, BN, CN, resp.
P = the Poncelet Point of (ABCN)
(ie the point the NPCs of ABC, NBC, NCA, NAB are concurrent at).
The circumcircles of PNaMa, PNbMb, PNcMc are coaxial.
Second intersection?
[César Lozada]:
Q2 = X(5)X(930) ∩ X(546)X(1154)
= (cos(2*A)-cos(4*A)+7/2)*cos(B- C)+2*(cos(A)-cos(3*A))*cos(2*( B-C))-3*(cos(2*A)-1)*cos(3*(B- C))+cos(5*A)+3*cos(A)-3*cos(3* A) : : (trilinears)
= 24*S^4+2*(11*R^4-(5*SA+3*SW)* R^2-2*(5*SA+SW)*(SB+SC))*S^2-( 5*R^4+2*R^2*SW-4*SW^2)*(SB+SC) *SA : : (barycentrics)
= On lines: {5, 930}, {137, 5501}, {546, 1154}, {10285, 12026}
= {X(137), X(5501)}-Harmonic conjugate of X(8254)
= [ -3.153893667415306, -3.20282776337338, 7.313650010742246 ]
César Lozada
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου