[Tran Quang Hung] = buratinogigle (*)
(*) Here
Let ABC be a triangle, A'B'C' the pedal triangle of I and A"B"C" the cevian triangle of the Nagel point Na.
The Euler lines of the triangles NaA'A", NaB'B", NaC'C" are concurrent.
Point of concurrence?
The Euler lines of the triangles NaA'A", NaB'B", NaC'C" are concurrent.
Point of concurrence?
(*) Here
The Euler lines of the triangles NaA'A", NaB'B", NaC'C" are concurrent at
W = ( a^7
+5 a^6 (b+c)
-a^5 (53 b^2-22 b c+53 c^2)
-a^4 (29 b^3-129 b^2 c-129 b c^2+29 c^3)
-a^3 (-79 b^4+64 b^3 c+222 b^2 c^2+64 b c^3-79 c^4)
+a^2 (19 b^5-133 b^4 c+146 b^3 c^2+146 b^2 c^3-133 b c^4+19 c^5)
-3 a (b^2-c^2)^2 (9 b^2-14 b c+9 c^2)
+(b-c)^2 (b+c)^3 (5 b^2-6 b c+5 c^2) : ... : ...).
W = 2r(13r-6R) X(40) - 3(4r(r+3R)-s^2) X(376)
W = X(40)X(376) /\ X(3857)X(5530)
(6 - 9 - 13) - search numbers of W: (8.21514432820893, 9.85564181395732, -6.97407723308250).
Angel Montesdeoca
W = ( a^7
+5 a^6 (b+c)
-a^5 (53 b^2-22 b c+53 c^2)
-a^4 (29 b^3-129 b^2 c-129 b c^2+29 c^3)
-a^3 (-79 b^4+64 b^3 c+222 b^2 c^2+64 b c^3-79 c^4)
+a^2 (19 b^5-133 b^4 c+146 b^3 c^2+146 b^2 c^3-133 b c^4+19 c^5)
-3 a (b^2-c^2)^2 (9 b^2-14 b c+9 c^2)
+(b-c)^2 (b+c)^3 (5 b^2-6 b c+5 c^2) : ... : ...).
W = 2r(13r-6R) X(40) - 3(4r(r+3R)-s^2) X(376)
W = X(40)X(376) /\ X(3857)X(5530)
(6 - 9 - 13) - search numbers of W: (8.21514432820893, 9.85564181395732, -6.97407723308250).
Angel Montesdeoca
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου