[Le Viet An]:
Let ABC be a triangle.
Denote:
J = the reflection of I in the Feuerbach point Fe
Let ABC be a triangle.
Denote:
J = the reflection of I in the Feuerbach point Fe
[ J = X(80)].
Then the cevian circle of J passes through Fe.
Which point is its center (lying on the OI line)?
Then the cevian circle of J passes through Fe.
Which point is its center (lying on the OI line)?
[Angel Montesdeoca]:
The center of cevian circle of X(80) is W = (9r(r+R)-s^2) X(1) - 9r(2r-R) X(3).
W = ( a (4 a^6
-a^5 (b+c)
-a^4 (13 b^2-8 b c+13 c^2)
+a^3 (2 b^3+11 b^2 c+11 b c^2+2 c^3)
+2 a^2 (7 b^4-8 b^3 c-3 b^2 c^2-8 b c^3+7 c^4)
-a (b-c)^2 (b^3+12 b^2 c+12 b c^2+c^3)
-(b^2-c^2)^2 (5 b^2-8 b c+5 c^2) ) : ... : ... ).
(6 - 9 - 13) - search numbers of W: (81.2652311218832, 67.3974022848629, -80.5261053100206).
The cevian circle of X(80) intersects the incircle in X(11) and X(3025).
Angel Montesdeoca
The center of cevian circle of X(80) is W = (9r(r+R)-s^2) X(1) - 9r(2r-R) X(3).
W = ( a (4 a^6
-a^5 (b+c)
-a^4 (13 b^2-8 b c+13 c^2)
+a^3 (2 b^3+11 b^2 c+11 b c^2+2 c^3)
+2 a^2 (7 b^4-8 b^3 c-3 b^2 c^2-8 b c^3+7 c^4)
-a (b-c)^2 (b^3+12 b^2 c+12 b c^2+c^3)
-(b^2-c^2)^2 (5 b^2-8 b c+5 c^2) ) : ... : ... ).
(6 - 9 - 13) - search numbers of W: (81.2652311218832, 67.3974022848629, -80.5261053100206).
The cevian circle of X(80) intersects the incircle in X(11) and X(3025).
Angel Montesdeoca
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου