Let ABC be a triangle.
Denote:
(Ia), (Ib), (Ic) = the A-, B-,C- excircle, resp.
(Na), (Nb), (Nc) = the NPCs of IBC, ICA, IAB, resp.
Ra = the radical axis of (Ia) and (Na)
Rb = the radical axis of (Ib) and (Nb)
Rc = the radical axis of (Ic) and (Nc)
A*B*C* = the triangle bounded by Ra, Rb, Rc
1. The NPC of A*B*C* passes through the Feuerbach point.
Center of the circle?
2. ABC, A*B*C* are orthologic.
Orthologic centers?
[Angel Montesdeoca]:
*** 1. Center of the NPC of A*B*C* :
W = ( a^8 (b-c)^2
-2 a^7 (b^3+5 b^2 c+5 b c^2+c^3)
-a^6 (2 b^4+11 b^3 c+30 b^2 c^2+11 b c^3+2 c^4)
+a^5 (6 b^5+45 b^4 c+41 b^3 c^2+41 b^2 c^3+45 b c^4+6 c^5)
+2 a^4 b c (15 b^4+94 b^3 c-14 b^2 c^2+94 b c^3+15 c^4)
-6 a^3 (b^7+10 b^6 c-11 b^4 c^3-11 b^3 c^4+10 b c^6+c^7)
+a^2 (b^2-c^2)^2 (2 b^4-19 b^3 c-158 b^2 c^2-19 b c^3+2 c^4)
+a (b-c)^4 (b+c)^3 (2 b^2+27 b c+2 c^2)
-(b-c)^6 (b+c)^4 : .... : ....).
(6 - 9 - 13) - search numbers of W: (0.777426283641197, 0.0129765810797222, 3.27286856409479)
*** 2. ABC, A*B*C* are orthologic.
The orthologic center (ABC, A*B*C) is X(5557)=Garcia-Feuerbach Point GF(1/3), where GF is the mapping defined at X(5550). (Emmanuel José Garcia; September 11, 2013).
The orthologic center (A*B*C*, ABC) is:
V = 2(r+10R) X(5) - 5R X(40).
V = (a^5 (b^2-10 b c+c^2)
-a^4 (b^3+11 b^2 c+11 b c^2+c^3)
-2 a^3 (b-c)^2 (b^2+6 b c+c^2)
+2 a^2 (b-c)^2 (b^3+7 b^2 c+7 b c^2+c^3)
+a (b^2-c^2)^2 (b^2+18 b c+c^2)
-(b-c)^4 (b+c)^3 : ... : ....).
V = X(5)X(40) /\ X(946)X(12680)
(6 - 9 - 13) - search numbers of V: (-3.10967432619234, -3.68825662960864, 7.62930722218683)
Angel Montesdeoca
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου