Let ABC be a triangle.
Denote:
Na, Nb, Nc = the NPC centers of IBC, ICA, IAB, resp.
N1, N2, N3 = the reflections of I in Na,Nb, Nc, resp.
Ni, Nii, Niii = the reflections of Na, Nb, Nc in I resp.
1. The circumcircles of ON1Ni, ON2Nii, ON3Niii are coaxial.
2. The NPC centers of ON1Ni, ON2Nii, ON3Niii are collinear.
[César Lozada]:
1) 2nd point of intersection (other than O)
Q2 = reflection of X(6789) in X(13607)
= 4*p^5*(4*p-17*q)+4*(17*q^2+12) *p^4-(28*q^2+73)*q*p^3+(4*q^4+ 52*q^2-9)*p^2-(17*q^2-6)*q*p+( 2*q^2-1)*q^2 : : (trilinears), where p=sin(A/2), q=cos((B-C)/2)
= On lines: {3,519}, {952,11717}, {3244,3667}, {6789,13607}
= reflection of X(6789) in X(13607)
= [ 1.986941081214689, 5.57525613919929, -1.136177959637295 ]
2) On the line {140, 900}
César Lozada
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου