Denote:
N1, N2, N3 = the NPC centers of HB"C", HC"A", HA"B", resp.
Na, Nb, Nc = the reflections of N1, N2, N3 in AA', BB', CC', resp.
2. ABC, N1N2N3 are orthologic.
The other one?
3. The circumcenter of NaNbNc is the midpoint of NH
4. ABC, NaNbNc are orthologic.
Orthologic centers?
*** 2. The orthologic center (N1N2N3, ABC) is X(5907) = COMPLEMENT OF X(185)
**** 4.
=== The orthologic center (ABC, NaNbNc) is the reflection U of X(4) in X(11792)
[ For infomation to X(11792) see Antreas Hatzipolakis and Angel Montesdeoca Hyacinthos 25266
Let ABC be a triangle. Denote:
Labc = the reflection of AB in AC
Ca = the orthogonal projection of C on Labc
Lacb = the reflection of AC in AB
Ba = the orthogonal projection of B on Lacb
Similarly: Ab, Cb, Bc, Ac
Ma, Mb, Mc = the midpoints of BaCa, CbAb, AcBc, resp.
The NPCs of ABC, MaBC, MbCA, McAB are concurrent at X(11792) ]
U = (a^16-b^2 c^2 (b^2-c^2)^6
-6 a^14 (b^2+c^2)
+2 a^12 (8 b^4+7 b^2 c^2+8 c^4)
-5 a^10 (5 b^6+b^4 c^2+b^2 c^4+5 c^6)
+a^8 (25 b^8-18 b^6 c^2+11 b^4 c^4-18 b^2 c^6+25 c^8)
-a^6 (b^2-c^2)^2 (16 b^6-3 b^4 c^2-3 b^2 c^4+16 c^6)
+a^4 (b^2-c^2)^2 (6 b^8-19 b^6 c^2-23 b^4 c^4-19 b^2 c^6+6 c^8)
-a^2 (b^2-c^2)^4 (b^6-8 b^4 c^2-8 b^2 c^4+c^6) : ... : ....),
U lies on the circumcircle and the lines X(i)X(j) for these {i, j}: {4,11792}, {30,11703}, {99,1232}, {110,140}, {112,6748}, {476,5899}, {953,5957}, {2687,5959}, {2699,5958}.
with (6 - 9 - 13) - search numbers (11.4518521443969, 13.1930353900201, -10.7784456239820).
=== The orthologic center (NaNbNc, ABC) is
V = (a^2 (a^6 (b^2+c^2)
-a^4 (3 b^4+8 b^2 c^2+3 c^4)
+a^2 (3 b^6+b^4 c^2+b^2 c^4+3 c^6)
-(b^2-c^2)^2 (b^4-4 b^2 c^2+c^4)) : ... : ...),
V is the reflection of X(i) in X(j), for these {i, j}: {3,10110}, {20,9729}, {186,13446}, {389,5446}, {548,10095}, {550,5462}, {1071,12109}, {1216,546}, {1350,9822}, {2071,13376}, {5462,12002}, {5907,4}, {10112,13142}, {10575,13382}, {10625,11793}, {10627,3850}, {11573,5806}, {11574,5480}, {11591,3861}, {12103,12006}, {13474,3627}.
V lies on the circumcircle of NaNbNc and the lines X(i)X(j) for these {i, j}: {2, 13348}, {3, 5943}, {4, 69}, {5, 3819}, {20, 51}, {22, 11424}, {23, 13367}, {25, 13346}, {26, 11430}, {30, 143}, {52, 382}, {182, 10790}, {185, 3060}, {186, 13446}, {343, 1907}, {373, 3523}, {376, 9781}, {381, 10625}, {394, 5198}, {517, 12527}, {546, 1216}, {548, 5892}, {550, 5462}, {568, 5073}, {569, 12083}, {575, 10984}, {576, 1181}, {578, 7387}, {631, 6688}, {970, 1012}, {1071, 12109}, {1092, 10594}, {1147, 7530}, {1154, 3853}, {1199, 8718}, {1350, 9822}, {1351, 1498}, {1503, 10112}, {1539, 13433}, {1598, 9306}, {1629, 1941}, {1657, 9730}, {2071, 13376}, {2393, 2883}, {2777, 11800}, {2979, 3832}, {3091, 3917}, {3098, 7395}, {3522, 5640}, {3525, 10219}, {3529, 3567}, {3530, 13364}, {3533, 12045}, {3543, 5889}, {3627, 10263}, {3830, 6243}, {3839, 11444}, {3843, 5891}, {3845, 6101}, {3850, 10170}, {3851, 13340}, {3855, 7999}, {3861, 11591}, {5012, 12087}, {5056, 5650}, {5059, 10574}, {5068, 7998}, {5092, 10323}, {5097, 7592}, {5480, 6823}, {5806, 11573}, {7517, 10282}, {8549, 9914}, {8681, 11477}, {9714, 11202}, {9815, 10996}, {9909, 11425}, {9969, 12362}, {10299, 11465}, {10601, 13347}, {10628, 12295}, {10733, 13417}, {11438, 12085}, {11807, 11819}, {12006, 12103}.
with (6 - 9 - 13) - search numbers (-9.43973422559837, -9.39477334459159, 14.5015387476701).
Angel Montesdeoca
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου