Πέμπτη 24 Οκτωβρίου 2019

HYACINTHOS 26170

[Antreas P. Hatzipolakis]:
 
Let ABC be a triangle.

Denote:

N1, N2, N3 = the NPC centers of OBC, OCA, OAB, resp.

Na, Nb, Nc = the reflections of N1, N2, N3 in AO, BO, CO, resp.

The circumcenter of N1N2N3 lies on the Euler line.


[Peter Moses]:
 
Hi Antreas,
 
>The circumcenter of N1N2N3 lies on the Euler line.
X(10226) is the circumcenter of NaNbNc lies on the Euler line.
 
>The circumcenter of N1N2N3

a^6 b^4-3 a^4 b^6+3 a^2 b^8-b^10-2 a^6 b^2 c^2+2 a^4 b^4 c^2-3 a^2 b^6 c^2+3 b^8 c^2+a^6 c^4+2 a^4 b^2 c^4-2 b^6 c^4-3 a^4 c^6-3 a^2 b^2 c^6-2 b^4 c^6+3 a^2 c^8+3 b^2 c^8-c^10::, 
lies on lines {{2,156},{3,12278},{5, 113},{26,1853},{30,5449},...}.
Complement X[156].
midpoint of X(i) and X(j) for these {i,j}: {{9927,11250},{12359,13371}}.
reflection of X(i) in X(j) for these {i,j}: {{10282,10125},{12038, 5498}}.
X[26] + 3 X[1853].
{X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (5,10264,185),(3448,6143,49).
Searches: {4. 53932730242720195010896651206, 4. 29323618897705372197243439169, -1. 42665009619690514291285248193} .
 
Best regards,
Peter Moses.

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου