Let ABC be a triangle, P a point and A'B'C' the pedal triangle of P.
Denote:
(Oa) = the reflection of the circle (P, PA') in BC
(Ob) = the reflection of the circle (P, PB') in CA
(Oc) = the reflection of the circle (P, PC') in AB.
T = the radical center of (Oa), (Ob), (Oc)
Which is the locus of P such that T lies on the Euler line?
O, H lie on the locus.
Note:
T is the point on PP* such that P*T / P*P = 1/4, where P* = the isogonal conjugate of P.
For P=u:v:w (trilinears) , T(P)=4*a*u*v*w+u^2*(b*w+c*v)+ 3*v*w*(b*v+c*w) : :
T(P)=P for P in the infinity
T(P)=isogonal(P), for P on the circumcircle
otherwise
> T is the point on PP* such that P*T / P*P = 1/4, where P* = the isogonal conjugate of P
(confirmed)
ETC-pairs (P,T(P)): (1,1), (3,546), (4,140), (6,3589), (15,11542), (16,11543), (80,3911), (3062,9)
> Which is the locus of P such that T lies on the Euler line?
This circum-cubic:
CyclicSum[a^2*y*z*((a^4+(2*b^ 2-3*c^2)*a^2-(b^2-c^2)*(3*b^2+ 2*c^2))*y-(a^4+(2*c^2-3*b^2)* a^2-(-b^2+c^2)*(3*c^2+2*b^2))* z)] - 8*(b^2-c^2) *(c^2-a^2)*(a^2-b^2) *x*y*z = 0 (Barycentrics)
through ETCs X(3), X(4), X(30), X(74), X(10620) and vertices of the antipedal triangle of X(110).
T( X(10620)) = 8*S^4+(918*R^4-360*R^2*SW+12* SA^2-12*SW*SA+32*SW^2)*S^2+( 63*R^2-16*SW)*(27*R^2-4*SW)*( SA-SW)*SA : : (barycentrics)
= 3*X(548)-2*X(7471)
= on line {2,3}
= [ 28.810281409421600, 27.86475923671581, -28.947375640167310 ]
César Lozada
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου