[Antrewas P. Hatzipolakis]:
Let ABC be a triangle and A'B'C' the pedal triangle of O.
Denote:
Ab, Ac = the orthogonal projections of A' on AC, AB, resp.
Denote:
Ab, Ac = the orthogonal projections of A' on AC, AB, resp.
A2 = A'Ab /\ OC'
A3 = A'Ac /\ OB'.
Oa = the circumcenter of A'A2A3. Similarly Ob, Oc.
The centroid of OaObOc lies on the Euler line ??
The centroid of OaObOc lies on the Euler line ??
[Peter Moses]:
Hi Antreas,
Hi Antreas,
>The centroid of OaObOc lies on the Euler line. ??
I get:
4 a^4-3 a^2 b^2+b^4-3 a^2 c^2-6 b^2 c^2+c^4::
on lines {{2,6},{5,754},{30,5171} ,{140,7751},{157,9909},{523,11 633},{538,549},{543,8703},{547 ,7775},{632,7764},...}.
Complement X[9766].
Midpoint of X(i) and X(j) for these {i,j}: {{2, 8667}, {9740, 11184}}.
Reflection of X(7775) in X(547).
{X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2,5306,597),(183,230,141),(38 5,3815,3629),(591,1991,69),(53 06,11168,2),(7610,8667,2),(778 8,8860,2).
Searches: {10.0990064313288782 980611128882,2.955887878401193 74296130169171,-3.066799325291 31424111382817092}.
Best regards,
Peter Moses.
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου