[Antreas P. Hatzipolakis]:
Let ABC be a triangle and A'B'C' the pedal triangle of O.
Denote:
Ma, Mb, Mc = the midpoints of AA', BB', CC', resp.
Maa, Mab, Mac = the reflections of Ma in OA', OB', OC', resp.
Denote:
Ma, Mb, Mc = the midpoints of AA', BB', CC', resp.
Maa, Mab, Mac = the reflections of Ma in OA', OB', OC', resp.
Mba, Mbb, Mbc = the reflections of Mb in OA', OB', OC', resp.
Mca, Mcb, Mcc = the reflections of Mc in OA', OB', OC', resp.
(Na), (Nb), (Nc) = NPCs of MaaMabMac, MbaMbbMbc, McaMcbMcc, resp.
1, (Na), (Nb), (Nc) are concurrent at a point on the Euler line of NaNbNc.
(Na), (Nb), (Nc) = NPCs of MaaMabMac, MbaMbbMbc, McaMcbMcc, resp.
1, (Na), (Nb), (Nc) are concurrent at a point on the Euler line of NaNbNc.
Which point is it wrt triangle:
a. ABC
b. NaNbNc ?
[Peter Moses]:
Hi Antreas,
1a.
a^2 (a^2-b^2-c^2) (a^6 b^2-a^4 b^4-a^2 b^6+b^8+a^6 c^2-2 a^4 b^2 c^2+2 a^2 b^4 c^2+b^6 c^2-a^4 c^4+2 a^2 b^2 c^4-4 b^4 c^4-a^2 c^6+b^2 c^6+c^8)::
on lines {{2,1112},{3,74},{20,12133},{1 13,6823},{125,343},{140,9826}, {143,6640},{146,10996},{265,66 43},{339,4576},{376,12292},{39 4,13198},{511,5159},{542,10691 },{631,1986},...}.
complement X(1112).
midpoint of X(i) and X(j) for these {i,j}: {{3,12358},{20,12133},{974,556 2},{1216,6699},{2979,12099},{ 6101,12236},{12219,13148}}.
reflection of X(i) in X(j) for these {i,j}: {{9826, 140}, {11746, 6723}}.
1b.
X(2071).
Best regards,
Peter Moses.
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου