Let ABC be a triangle, P a point and A'B'C' the pedal triangle of P.
Denote:
Na, Nb, Nc = the NPC centers of PB'C', PC'A', PA'B', resp
ABC, NaNbNc are parallelogic.
The parallelogic center (ABC, NaNbNc) lies on the circumcircle.
Which are the parallelogic centers in terms of P?
[Angel Montesdeoca]:
*** P=(u:v:w), barycentric coordinates.
The parallelogic center (ABC, NaNbNc) lies on the circumcircle:
U = (a^2 (b^4 w (-u+w)+(a^2-c^2) v (c^2 (u-v)+a^2 w)+b^2 (a^2 (u-v-w) w+c^2 (u^2+2 v w-u (v+w)))) : ... : ...).
The parallelogic center ( NaNbNc, ABC) is:
V = (a^2 (c^2 (a^2-c^2) v-b^4 w+b^2 (4 c^2 u+a^2 w)) : ... : ...).
*** When P moves on a line passing through the circumcenter, the point U remains fixed.
More details and figures in
http://amontes.webs.ull.es/ otrashtm/HGT2017.htm#HG180417
Angel Montesdeoca
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου