[Antreas P. Hatzipolakis]:
Let ABC be a triangle and A'B'C' the pedal triangle of N.
Denote:
Ab, Ac = the orthogonal projections of A' on NB', NC', resp.
Mab, Mac = the midpoints of BAb, CAc, resp.
Ma = the midpoint of MabMac.
Similarly Mb, Mc
The centroid of MaMbMc lies on the Euler line.
[Angel Montesdeoca]:
*** The centroid of MaMbMc is W= X(2) + X(10128)
W = ( 2 a^6+a^4 (b^2+c^2)-2 a^2 (b^4-16 b^2 c^2+c^4) -(b^2-c^2)^2 (b^2+c^2): ... : ...),
On the lines {2,3}, {1503,10219}, {3564,6688}
with (6-9-13)-search numbers (1.95451272868902, 1.07983675186231, 1.99100239430016).
Angel Montesdeoca
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου