[Tran Quang Hung]:
Let ABC be a triangle with two Fermat point F1,F2.
M is midpoint of F1F2 then M lies on NPC of ABC.
Ma,Mb,Mc are midpoints of BC,CA,AB, reps.
NPC of triangles AF1F2,BF1F2,CF1F2 intersects NPC of ABC at A',B',C' other than M.
G is centroid of triangle ABC.
Then the lines MaA',MbB',McC' and MG are concurent.
Which is this point ?
[César Lozada]:
Z = (3*SA-SW)*(6*SA^2-(9*R^2+2*SW) *SA+6*S^2-2*SW^2+3*R^2*SW) : : (barycentrics)
= On lines: {2,99}, {5,5099}, {3580,10413}
= [ 2.883964049976410, 0.72437017953226, 1.808117103780623 ]
César Lozada
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου