[Antreas P. Hatzipolakis]:
Let ABC be a triangle.
Denote:1. (N11), (N21), (N31) are coaxial
2. (N12), (N22), (N32) are coaxial
3. (N12), (N22), (N32) are coaxial.
Let M1, M2, M3 be the midpoints of IS1, IS2, S1S2, resp.
The perpendicular bisectors of FeM1, FeM2, FeM3 are concurrent. Or:
M1, M2, M3, Fe are concyclic.
Center of the circle?
Simpler:
The NPC of IS1S2 passes through the Feuerbach point.
Which point is its center?
[Peter Moses]:
Hi Antreas,
and X(3649),X(5542).>The NPC of IS1S2 passes through the Feuerbach point.
X(3649) is the midpoint of X(1) and X(79)
X(5542) is the midpoint of X(1) and X(7)
center:
(b-c) (-a^8+5 a^6 b^2-2 a^5 b^3-7 a^4 b^4+4 a^3 b^5+3 a^2 b^6-2 a b^7+4 a^6 b c-4 a^5 b^2 c-a^4 b^3 c-a^3 b^4 c+2 a^2 b^5 c-a b^6 c+b^7 c+5 a^6 c^2-4 a^5 b c^2+3 a^4 b^2 c^2+3 a^3 b^3 c^2-2 a^2 b^4 c^2-3 a b^5 c^2-2 b^6 c^2-2 a^5 c^3-a^4 b c^3+3 a^3 b^2 c^3-6 a^2 b^3 c^3+6 a b^4 c^3-b^5 c^3-7 a^4 c^4-a^3 b c^4-2 a^2 b^2 c^4+6 a b^3 c^4+4 b^4 c^4+4 a^3 c^5+2 a^2 b c^5-3 a b^2 c^5-b^3 c^5+3 a^2 c^6-a b c^6-2 b^2 c^6-2 a c^7+b c^7)::
Another point on the circle is
2 a^6-a^5 b-4 a^4 b^2+4 a^2 b^4+a b^5-2 b^6-a^5 c-6 a^4 b c-5 a^3 b^2 c+8 a b^4 c+4 b^5 c-4 a^4 c^2-5 a^3 b c^2-8 a^2 b^2 c^2-9 a b^3 c^2+2 b^4 c^2-9 a b^2 c^3-8 b^3 c^3+4 a^2 c^4+8 a b c^4+2 b^2 c^4+a c^5+4 b c^5-2 c^6::
the midpoint of X(7) and X(79)
on lines {{7,79},{9,6701},{11,553},{30, 5542},...}.
2 a^6-a^5 b-4 a^4 b^2+4 a^2 b^4+a b^5-2 b^6-a^5 c-6 a^4 b c-5 a^3 b^2 c+8 a b^4 c+4 b^5 c-4 a^4 c^2-5 a^3 b c^2-8 a^2 b^2 c^2-9 a b^3 c^2+2 b^4 c^2-9 a b^2 c^3-8 b^3 c^3+4 a^2 c^4+8 a b c^4+2 b^2 c^4+a c^5+4 b c^5-2 c^6::
the midpoint of X(7) and X(79)
on lines {{7,79},{9,6701},{11,553},{30, 5542},...}.
So, as you mention, the circle is the NP circle of X(1,7,79).
Best regards,
Peter Moses.
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου