Τετάρτη 23 Οκτωβρίου 2019

HYACINTHOS 25680

[Tran Quang Hung, rephrased]:

Let ABC be a triangle, P a point and A'B'C' the circumcevian triangle of P.

Denote:

A1A2A3, B1B2B3, C1C2C3 = the pedal triangles of A', B', C' wrt triangles PBC, PCA, PAB, resp.

La, Lb, Lc = the Euler lines of A1A2A3, B1B2B3, C1C2C3, resp.

Which is the locus of P such that La, Lb, Lc are concurrent?


[Angel Montesdeoca]:

 

*** The locus of P such that La, Lb, Lc are concurrent is a  degree-14-circumcurve passing through the vertices of the excentral triangle, X(1), X(4), X(74).

For P=I the concurrent point is X(21)
For P=H the concurrent point is X(52)
For P=X(74) the concurrent point is the midpoint of X(3) and X(74):

(a^2 (2 a^8-3 a^6 (b^2+c^2)-3 a^4 (b^4-4 b^2 c^2+c^4)-(b^2-c^2)^2 (3 b^4+7 b^2 c^2+3 c^4)+a^2 (7 b^6-8 b^4 c^2-8 b^2 c^4+7 c^6)) : ... : ....),

with (6-9-13)-search numbers
(9.719762854243672961545 , 9.2927959862678684885096 ,-7.278854056698148140409).

Angel Montesdeoca

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου