Κυριακή 20 Οκτωβρίου 2019

HYACINTHOS 25668

[Tran Quang Hung]:

Let ABC be a triangle.
 
A'B'C' is cevian triangle of circumcenter O.
 
Circle (A'B'C') intersects BC,CA,AB again at A'',B'',C''.
 
Then orthocenter of triangle A''B''C'' lies on Euler line of ABC.
 
Which is this point ?

 
[Peter Moses]:


Hi Antreas,
 
(2 a^4-3 a^2 b^2+b^4-3 a^2 c^2-2 b^2 c^2+c^4) (a^12-5 a^10 b^2+9 a^8 b^4-6 a^6 b^6-a^4 b^8+3 a^2 b^10-b^12-5 a^10 c^2+11 a^8 b^2 c^2-2 a^6 b^4 c^2-2 a^4 b^6 c^2-9 a^2 b^8 c^2+7 b^10 c^2+9 a^8 c^4-2 a^6 b^2 c^4+6 a^4 b^4 c^4+6 a^2 b^6 c^4-19 b^8 c^4-6 a^6 c^6-2 a^4 b^2 c^6+6 a^2 b^4 c^6+26 b^6 c^6-a^4 c^8-9 a^2 b^2 c^8-19 b^4 c^8+3 a^2 c^10+7 b^2 c^10-c^12)::
on line {2,3}.
 
Generalisation:
A'B'C' is cevian triangle of a point P on the Jerabek circumhyperbola.
Circle (A'B'C') intersects BC,CA,AB again at A'',B'',C''.
Then orthocenter of triangle A''B''C'' lies on Euler line of ABC.
 
Best regards
Peter.
 
 

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου