[Antreas P. Hatzipolakis]:
Let ABC be a triangle and A'B'C' the pedal triangle of O.
1. Denote:
Na, Nb, Nc = the NPC centers of NBC, NCA, NAB, resp.
N1, N2, N3 = the NPC centers of N'B'C', N'C'A', N'A'B', resp, where N ' = the NPC of A'B'C'
(ie N1, N2, N3 are the complements of Na, Nb, Nc, resp.)
Ma, Mb, Mc = the midpoints of NaN1, NbN2, NcN3, resp.
The circumcenter of MaMbMc lies on the Euler line of ABC.
2. Denote:
Oa, Ob, Oc = the circumcenters of NBC, NCA, NAB, resp.
O1, O2, O3 = the circumcenters of N'B'C', N'C'A', N'A'B', resp, where N ' = the NPC of A'B'C'
(ie O1, O2, O3 are the complements of Oa, Ob, Oc, resp.)
M1, M2, M3 = the midpoints of OaO1, ObO2, OcO3, resp.
The NPC of M1M2M3 lies on the Euler line of ABC.
[César Lozada]:
1) Z1 = 9*(cos(2*A)+cos(4*A)-11/6)* cos(B-C)-10*(cos(A)-cos(3*A))* cos(2*(B-C))+(cos(2*A)-6)*cos( 3*(B-C))-cos(5*A)-11*cos(A)+ 11*cos(3*A) : : (trilinears)
= on line {2,3}
= [ 1.175103165240290, 0.30248329052179, 2.888897666050696 ]
2) Z2 = 11*(cos(2*A)+cos(4*A)-3/2)* cos(B-C)-2*(5*cos(A)-6*cos(3* A))*cos(2*(B-C))-(cos(2*A)+5)* cos(3*(B-C))+cos(5*A)-9*cos(A) +11*cos(3*A) :: (trilinears)
= on line {2,3}
= midpoint of X(140) and X(10289)
= [ 3.824072288380420, 2.94446436622948, -0.162767289350071 ]
César Lozada
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου