[Antreas P. Hatzipolakis]:
Let ABC be a triangle, AhBhCh the pedal triange of H and N' the Poncelet point of ABCN
(ie the point the NPCs of ABC, NBC, NCA, NAB are concurrent at).
Denote:
hA = the second intersection of AhN' and the NPC of NBC
hB = the second intersection of BhN' and the NPC of NCA
hC = the second intersection of ChN' and the NPC of NAB
ABC, hAhBhC are orthologic.
[César Lozada]:
Orthologic centers:
Z(A->hA) = cos(B-C)*sec(2*(B-C))/(1-2* cos(2*A)) : : (trilinears)
= On line: {252,5449}
= isogonal conjugate of {4,1510}/\{54,5946}
= [ 1.906612339547154, 0.77749424457911, 2.222424309715539 ]
Z(hA->A) = X(143)
César Lozada
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου