[Antreas P. Hatzipolakis]:
Let ABC be a triangle and A'B'C' the pedal triangle of I.
Denote:
A", B", C" = the reflections of I in BC, CA, AB, resp.
Ma, Mb, Mc = the midpoints of AA", BB", CC", resp
A*B*C* = the orthic triangle of A'B'C'
The circumcrcles of AA*Ma, BB*Mb, CC*Mc are coaxial.
****************************** **
Notice that MaMbMc, A*B*C* are perspectve (at the orthoceter of A'B'C' = pedal triangle of I)
Now I construct another triangle A*B*C* perspective with MaMbMc:
Let ABC be a triangle.
Denote:
A', B', C' = the reflections of I in BC, CA, AB, resp.
Ma, Mb, Mc = the midpoints of AA', BB', CC', resp.
A*, B*, C* = the reflections of Ma, Mb, Mc in I, resp.
The circumcrcles of AA*Ma, BB*Mb, CC*Mc are coaxial.
"Radical trace" (*) ? [ = midpoint of the line segment joining the points of the intersections of the circles]
(*) The term used by CL is a nice term, I don't know if it is an old one or a neologism in geometry (it is a term used in Algebra)
[César Lozada]:
T = (b+c)*a^8-2*(3*b^2+4*b*c+3*c^ 2)*a^7-(b+c)*(2*b^2-35*b*c+2* c^2)*a^6+2*(9*b^4+9*c^4-2*b*c* (4*b^2+15*b*c+4*c^2))*a^5-b*c* (b+c)*(77*b^2-137*b*c+77*c^2)* a^4-2*(9*b^6+9*c^6-2*(12*b^4+ 12*c^4+b*c*(9*b^2-14*b*c+9*c^ 2))*b*c)*a^3+(b+c)*(2*b^6+2*c^ 6+(41*b^4+41*c^4-b*c*(165*b^2- 229*b*c+165*c^2))*b*c)*a^2+6*( b^2-c^2)^2*(b^4+c^4-b*c*(4*b^ 2-3*b*c+4*c^2))*a+(b^2-c^2)^2* (b+c)^3*(3*b*c-b^2-c^2) : : (trilinears)
= on line {2475,2802}
= [ 0.758582699112975, 3.36208228083251, 0.962953964817422 ]
César Lozada
PD:
Radical trace: In Yahoo Hyacinthos web page, search conversations containing “radical trace” (quotes included). You will find some posts using this term, the first one dated Jan 11, 2007
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου