[Antreas P. Hatzipolakis]:
Let ABC be a triangle, P a point and A'B'C' the pedal triangle of P.
Denote:
A", B", C" = the orthogonal projections of A, B, C on PA', PB', PC', resp.
Ab, Ac = the orthogonal projections of A" on BO, CO, resp.
Bc, Ba = the orthogonal projections of B" on CO, AO, resp.
Ca, Cb = the orthogonal projections of C" on AO, BO, resp.
Na, Nb, Nc = the NPC centers of A"AbAc, B"BcBa, C"CaCb, resp.
Which is the locus of P such that ABC, NaNbNc are orthologic?
The Euler line?
And which are the loci of the orthologic centers as P moves on the Euler line?
[César Lozada]:
> The Euler line?
Yes.
Za = ABC->NaNbNc: The locus is the circum-conic CyclicSum[ a*(SB^2-SC^2)*SA*(SA^2+5*S^2)* v*w ]=0 (trilinears) = isogonal conjugate of the line {4, 2889, 6101, 11591}. O is the only ETC center on it.
Zn = NaNbNc->ABC: The locus is the line {3, 143, 1173, 3060, 3567, 5422, 5495, 5946, 9777, 10263}.
If OP=t*OH, then OZn=t*OX(143).
Zn(O) = O ; Zn(H)=X(143)
Za(O) = isogonal conjugate of X(11591)
= 1/((b^2+c^2)*a^2-(b^2-c^2)^2)/ (a^4-2*(b^2+c^2)*a^2+3*b^2*c^ 2+c^4+b^4) : : trilinears
= on lines: {30,54}, {95,3260}, {1990,8882}
= isogonal conjugate of X(11591)
= trilinear pole of the line {1637,2623}
= [ -5.392942000760921, 11.54709120356563, -1.864425427902168 ]
Za(H) = isogonal conjugate of X(6101)
= 1/(a*((b^2+c^2)*a^6-(3*b^4+4* b^2*c^2+3*c^4)*a^4+(b^2+c^2)*( 3*b^4-b^2*c^2+3*c^4)*a^2-(b^6- c^6)*(b^2-c^2))) : : (trilinears)
= on lines: {5,1614}, {53,10312}, {54,3613}, {311,1078}
= [ -5.946442603069915, -8.88166434592441, 12.534020999733550 ]
César Lozada
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου