Let ABC be a triangle and A'B'C' the pedal triangle of H.
Denote:2. The circumcircles of OA1A2, OB1B2, OC1C2 are coaxial.
Second points of intersections?GENERALIZATION:
Let ABC be a triangle, A'B'C' the pedal triangle of H and P a point.
Denote:[Peter Moses]:
>The circumcircles of P{p,q,r}A1A2, P{p,q,r}B1B2, P{p,q,r}C1C2 are coaxial.
Hi Antreas,
1) X(23).
2) a^8 b^2-2 a^6 b^4+2 a^2 b^8-b^10+a^8 c^2+6 a^6 b^2 c^2-2 a^4 b^4 c^2-8 a^2 b^6 c^2+3 b^8 c^2-2 a^6 c^4-2 a^4 b^2 c^4+12 a^2 b^4 c^4-2 b^6 c^4-8 a^2 b^2 c^6-2 b^4 c^6+2 a^2 c^8+3 b^2 c^8-c^10::
on lines {{2,3},{11,4351},{12,4354},{ 94,10688},{113,511},{115,3003} ,{125,1533},{265,1177},{399, 3564},{495,9642},{524,5655},.. .}.
on lines {{2,3},{11,4351},{12,4354},{ 94,10688},{113,511},{115,3003} ,{125,1533},{265,1177},{399, 3564},{495,9642},{524,5655},.. .}.
Midpoint of X(i) and X(j) for these {i,j}: {{4,23},{125,1533},{3581,7728} }.
Reflection of X(i) in X(j) for these {i,j}: {{3,468},{403,11563},{858,5},{ 2072,403},{7574,10297},{7728, 1514},{10295,7575},{10564, 5972}}.
(a^8 b^2-4 a^6 b^4+6 a^4 b^6-4 a^2 b^8+b^10+a^8 c^2-8 a^6 b^2 c^2+a^4 b^4 c^2+9 a^2 b^6 c^2-3 b^8 c^2-4 a^6 c^4+a^4 b^2 c^4-10 a^2 b^4 c^4+2 b^6 c^4+6 a^4 c^6+9 a^2 b^2 c^6+2 b^4 c^6-4 a^2 c^8-3 b^2 c^8+c^10) p+(2 a^4-a^2 b^2-b^4-a^2 c^2+2 b^2 c^2-c^4) (a^6-3 a^4 b^2+3 a^2 b^4-b^6-a^4 c^2-5 a^2 b^2 c^2+3 b^4 c^2-a^2 c^4-3 b^2 c^4+c^6) q+(2 a^4-a^2 b^2-b^4-a^2 c^2+2 b^2 c^2-c^4) (a^6-a^4 b^2-a^2 b^4+b^6-3 a^4 c^2-5 a^2 b^2 c^2-3 b^4 c^2+3 a^2 c^4+3 b^2 c^4-c^6) r::
Best regards,
Peter Moses.
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου