Let ABC be a triangle.
Denote:
A', B', C' = the reflections of N in BC, CA, AB, resp.
A", B", C" = the orthogonal projections of A, B, C on B'C', C'A', A'B', resp.
Ab, Ac = the orthogonal projections of A" on NB', NC', resp.
Bc, Ba = the orthogonal projections of B" on NC', NA', resp.
Ca, Cb = the orthogonal projections of C" on NA', NB', resp.
La, Lb, Lc = the Euler lines of A"AbAc, B"BcBa, C"CaCb, resp.
A*B*C* = the triangle bounded by La, Lb, Lc
ABC, A*B*C* are parallelogic.
The parallelogic center (ABC, A*B*C*) is de Longchamps point X20 (reflection of H in O)
The other one?
[César Lozada]:
Z(A*->A) = complement of X(389)
[....]
GENERALIZATION:
Let ABC be a triangle.
Denote:
A', B', C' = the reflections of N in BC, CA, AB, resp.
A", B", C" = the orthogonal projections of A, B, C on B'C', C'A', A'B', resp.
Ab, Ac = the orthogonal projections of A" on NB', NC', resp.
Bc, Ba = the orthogonal projections of B" on NC', NA', resp.
Ca, Cb = the orthogonal projections of C" on NA', NB', resp.
A'b, A'c = points on A"Ab, A"Ac, resp. such that: A'bAb/A'bA" = A'cAc/A'cA" = t
B'c, B'a = points on B"Bc, B"Ba, resp. such that: B'cBc/B'cB" = B'aBa/B'aB" = t
C'a, C'b = points on C"Ca, C"Cb, resp. such that: C'aCa/C'aC" = C'bCb/C'bC" = t
La, Lb, Lc = the Euler lines of A"A'bA'c, B"B'cB'a, C"C'aC'b, resp.
A*B*C* = the triangle bounded by La, Lb, Lc
ABC, A*B*C* are parallelogic.
The parallelogic center (ABC, A*B*C*) is de Longchamps point X20 (reflection of H in O)
Locus of the other one (A*B*C*, ABC) as t varies?
[César Lozada]:
> GENERALIZATION:
> The parallelogic center (ABC, A*B*C*) is de Longchamps point X20 (reflection of H in O)
Confirmed.
Locus of the other one (A*B*C*, ABC) as t varies?
Line {5,141} through ETC’s { 5, 141, 211, 511, 623, 624, 625, 626, 635, 636, 639, 640, 1216, 2039, 2040, 3454, 3613, 3934, 5031, 5103, 5403, 5404, 5446, 5480, 6101, 7683, 7684, 7685, 7849, 8262, 9822, 9823, 9824, 9969, 10110, 10170, 10263, 11675} = trilinear polar of:
Q = isogonal conjugate of X(3050)
= 1/((b^2-c^2)*(a^4-(b^2+c^2)*a^ 2-b^2*c^2)) : : (barycentrics)
= On lines: {110,9514}, {194,11002}, {2421,4576}, {3448,9513}, {3613,5169}
= isogonal conjugate of X(3050)
= Trilinear pole of the line {5,141}
= [ -1.126522332473350, 0.65912950741095, 3.704277437918342 ]
César Lozada
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου