Let ABC be a triangle.
Denote:Lacb = the reflection of AC in AB
Ba = the orthogonal projection of B on Lacb
Similarly:
Lbca = the reflection of BC in BA
Ab = the orthogonal projection of A on Lbca
Lbac = the reflection of BA in BC
Cb = the orthogonal projection of C on Lbac
Lbca = the reflection of BC in BA
Ab = the orthogonal projection of A on Lbca
Lbac = the reflection of BA in BC
Cb = the orthogonal projection of C on Lbac
and
Lcab = the reflection of CA in CB
Bc = the orthogonal projection of B on Lcab
Lcba = the reflection of CB in CA
Ac = the orthogonal projection of A on Lcba
Lcab = the reflection of CA in CB
Bc = the orthogonal projection of B on Lcab
Lcba = the reflection of CB in CA
Ac = the orthogonal projection of A on Lcba
Ma, Mb, Mc = the midpoints of BaCa, CbAb, AcBc, resp.
The NPCs of ABC, MaBC, MbCA, McAB are concurrent.
[Angel Montesdeoca]:
The NPCs of ABC, MaBC, MbCA, McAB are concurrent at R
R = ( (b^2-c^2)^2 (2 a^8
-7 a^6 (b^2+c^2)
+a^4 (9 b^4+4 b^2 c^2+9 c^4)
+a^2 (-5 b^6+8 b^4 c^2+8 b^2 c^4-5 c^6)
+(b^2-c^2)^2 (b^4-3 b^2 c^2+c^4)) : ... : ... ),
with search number 2.887616366735193662803171
R lies on lines : {113,3850}, {114,10276}, {128,10277}, {137,7668}, ....
Angel Montesdeoca
The NPCs of ABC, MaBC, MbCA, McAB are concurrent at R
R = ( (b^2-c^2)^2 (2 a^8
-7 a^6 (b^2+c^2)
+a^4 (9 b^4+4 b^2 c^2+9 c^4)
+a^2 (-5 b^6+8 b^4 c^2+8 b^2 c^4-5 c^6)
+(b^2-c^2)^2 (b^4-3 b^2 c^2+c^4)) : ... : ... ),
with search number 2.887616366735193662803171
R lies on lines : {113,3850}, {114,10276}, {128,10277}, {137,7668}, ....
Angel Montesdeoca
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου