Let ABC be a triangle and A'B'C', A"B"C" the cevian triangles of H, G, resp.
Denote:[...]
Hi Antreas,
>3. ABC, MiMiiMiii are orthologic
Orthologic center (ABC, MiMiiMiii):
a^2 (6 a^4-12 a^2 b^2+6 b^4+13 a^2 c^2+13 b^2 c^2-17 c^4) (6 a^4+13 a^2 b^2-17 b^4-12 a^2 c^2+13 b^2 c^2+6 c^4):: on lines {}.
Search -14.161795299591058133.
Its isogonal conjugate: 17 a^4-13 a^2 b^2-6 b^4-13 a^2 c^2+12 b^2 c^2-6 c^4::,
is on lines {{6,20},{187,3534},{376,5585}, {382,8589},{550,5210},{574,165 7},{1384,5346},{3054,3522},{ 3055,3146},{3763,7833},{5024,7 753}}.
is on lines {{6,20},{187,3534},{376,5585}, {382,8589},{550,5210},{574,165 7},{1384,5346},{3054,3522},{ 3055,3146},{3763,7833},{5024,7 753}}.
>The orthologic center (MiMiiMiii, ABC) lies on the Euler line.
X(3860)
X(3860)
Best regards,
Peter Moses.
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου