Τρίτη 22 Οκτωβρίου 2019

HYACINTHOS 25236

[Antreas P. Hatzipolakis]:
 
Let ABC be a triangle.

The circle (B, BC) intersects the circumcircle again at Ab
The circle (C, CB) intersects the circumcircle again at Ac

The perpendicular from N to AAb intersects AB at A2
The perpendicular from N to AAc intersects AC at A3

B,C,A2,A3 are concyclic (*). Let (Oa) be the circle (B,C,A2,A3) and simiarly (Ob), (Oc).

1. Which is the radical center of (Oa), (Ob), (Oc)?

2. Are the triangles ABC, OaObOc perspective ?

3. ABC, OaObOc are orthologic.
The orthologic center (OaObOc, ABC) is the O.
Which is the orthologic center *ABC, OaObOc) ?
 
(*) Stathis Koutras' Problem 422 in "Romantics of Geometry"


[Peter Moses]:



Hi Antreas,
 
Ab = {a^2 (-a^2+b^2+c^2), (c^2-a^2) (-a^2+b^2+c^2), c^2 (a^2-c^2)}.
power (Oa) = {((-a^2+b^2+c^2)^2 - b ^2 c^2) / (2 (-a^2+b^2+c^2)), 0, 0}.
 
1) X(265).
 
2) No.
However, perspective to medial, tangential and many others at O.

Perspective to Euler triangle at a^8 b^2-a^6 b^4-3 a^4 b^6+5 a^2 b^8-2 b^10+a^8 c^2-a^6 b^2 c^2+3 a^4 b^4 c^2-9 a^2 b^6 c^2+6 b^8 c^2-a^6 c^4+3 a^4 b^2 c^4+8 a^2 b^4 c^4-4 b^6 c^4-3 a^4 c^6-9 a^2 b^2 c^6-4 b^4 c^6+5 a^2 c^8+6 b^2 c^8-2 c^10::
on lines {{2,9927},{3,10113},{4,11270}, {5,5890},{54,1656},{74,5895},{ 125,6241},...}.
Midpoint of X(4) and X(11270).
 
3) X(265).
 
Best regards,
Peter Moses.

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου