Let ABC be a triangle and A'B'C' the cevian triangle of I..
Denote
Aa, Bb, Cc = the reflections of A, B, C in B'C', C'A', A'B', resp.
Aaa, Bbb, Ccc = the reflections of Aa,Bb,Cc in BC, CA, AB, resp.
A1, B2, C3 = the reflections of A,B,C in BC, CA, AB, resp.
A11, B22, C33 = the reflections of A1, B2, C3 in B'C', C'A', A'B', resp.
A*B*C* = the triangle bounded by AaaA11, BbbB22, CccC33
1. ABC, AaaBbbCcc are perspective.
Perspector?
2. ABC, A11B22C33 are perspective.
Perspector (on the OI line)?
3. ABC, A*B*C* are parallelogic.
The prallelogic center (ABC, A*B*C*) is the I
The other one?
[César Lozada]:
1) X(79)
2) X(35)
3) X(1) and
(A*->A) = (p^2+q*p+1/4)*(4*q*p^5-p^4-(4* q^2+5)*q*p^3+2*q^2*p^2+(4*q^2+ 1)*q*p-3/2*q^2+9/16) : : (trilinears), where p=sin(A/2), q=cos((B-C)/2)
= [ 0.349324465921745, 0.87629098804711, 2.872774813603269 ]
César Lozada
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου