1. A'B'C', HaaHbbHcc are homothetic.
Homothetic center (on the Euler line) ?
3. ABC, IaaIbbIcc are homothetic.
Homothetic center (on the Euler line of A'B'C') ?
ORTHIC TRIANGLE VERSION
1. A'B'C', HaaHbbHcc are homothetic.
Homothetic center (on the Euler line) ?
**** X(1594) = Rigby-Lalescu orthopole
2. ABC, A*B*C* are parallelogic.
The parallelogic center (ABC, A*B*C*) is the G.
The other one?
**** V = X(3)X(1199) /\ X(858)X(6243)
V = (a^2 ((b^2-c^2)^4 (2 b^6+3 b^4 c^2+3 b^2 c^4+2 c^6)
-2 (b^2-c^2)^2 (4 b^8+4 b^6 c^2+3 b^4 c^4+4 b^2 c^6+4 c^8) a^2
+2 (5 b^10+b^8 c^2-2 b^6 c^4-2 b^4 c^6+b^2 c^8+5 c^10) a^4
-2 b^2 c^2 (b^4-b^2 c^2+c^4) a^6
+(-10 b^6-11 b^4 c^2-11 b^2 c^4-10 c^6) a^8
+2 (4 b^4+5 b^2 c^2+4 c^4) a^10
-2 (b^2+c^2) a^12) : ... : ... ),
with (6-9-13)-search numbers ( 9.13527852082385, 7.29272565695836, -5.62442798252088).
EXCENTRAL TRIANGLE VERSION
3. ABC, IaaIbbIcc are homothetic.
Homothetic center (on the Euler line of A'B'C') ?
**** X(165) on the Euler line of A'B'C': X(1)X(3)
4. A'B'C', A*B*C* are parallelogic.
The parallelogic center (A'B'C', A*B*C*) is the G of A'B'C'.
The other one?
**** W = X(35)X(1699) /\ X(40)X(382)
W = (2 (b-c)^4 (b+c)^3
-(b-c)^2 (b+c)^4 a
-(b-c)^2 (b^3+c^3) a^2
-(b-c)^2 (2 b^2+3 b c+2 c^2) a^3
+(-4 b^3-3 b^2 c-3 b c^2-4 c^3) a^4
+(7 b^2+b c+7 c^2) a^5
+3 (b+c) a^6
-4 a^7 : ... : ...),
with (6-9-13)-search numbers (-12.6921889638726, -13.6867545764541, 18.9740433258553).
Angel Montesdeoca
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου