Τρίτη 22 Οκτωβρίου 2019

HYACINTHOS 25106

[Antreas P. Hatzipolakis]:
 
Let ABC be a triangle,  A'B'C' the cevian triangle of O and A"B"C" the pedal triangle of O wrt triangle A'B'C'.

The circles AOA", BOB", COC" are coaxial.

Second point of intersection?

Generalization:

Let ABC be a triangle, P a point, A'B'C' the cevian triangle of P and A"B"C" the pedal triangle of  P wrt triangle A'B'C'.

Which is the locus of P such that the circumcircles of APA", BPB", CPC" are coaxial?

O, I, H lie on the locus.

The Darboux cubic?

 
[Peter Moses]:


Hi Antreas,
 
Yes, Darboux cubic K004.
 
P = I, second = X(1155).
 
P = O, second  = {{3,64},{20,6526},{30,133},{ 186,1301},{250,2071},{253, 10304},{376,459},{1304,5896},{ 1559,6716}}.
isog X(10152).
reflection of X(1559) in X(6716).
midpoint of X(186) & X(2693).
on Q071,K039,K446.
inverse of X(64) in the circumcircle.
.....
 
P= H, second = X(5203).
 
Best regards,
Peter Moses.

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου